Effect of the Tiger Stripes on the water vapor distribution in Enceladus' exosphere
The jet activity emanating from Enceladus' exosphere south pole region observed by Cassini is a subject of intensive study. The in situ and remote sensing observations performed since 2005 triggered an active modeling campaign. Such modeling is essential for better understanding of the measurem...
Published in: | Journal of Geophysical Research: Planets |
---|---|
Main Authors: | , , , , , |
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
Springer
2014
|
Subjects: | |
Online Access: | https://hdl.handle.net/2027.42/110627 https://doi.org/10.1002/2014JE004700 |
_version_ | 1835021085111746560 |
---|---|
author | Tenishev, Valeriy Öztürk, Doğa Can Su Combi, Michael R. Rubin, Martin Waite, Jack Hunter Perry, Mark |
author_facet | Tenishev, Valeriy Öztürk, Doğa Can Su Combi, Michael R. Rubin, Martin Waite, Jack Hunter Perry, Mark |
author_sort | Tenishev, Valeriy |
collection | Unknown |
container_issue | 12 |
container_start_page | 2658 |
container_title | Journal of Geophysical Research: Planets |
container_volume | 119 |
description | The jet activity emanating from Enceladus' exosphere south pole region observed by Cassini is a subject of intensive study. The in situ and remote sensing observations performed since 2005 triggered an active modeling campaign. Such modeling is essential for better understanding of the measurements performed by individual instruments as well as to link them for a more complete picture of the volatile and ice grain distribution in Enceladus' exosphere. This paper is focused on the investigation of the effect that diffuse gas sources along the Tiger Stripes have on distribution of the water vapor in Enceladus' exosphere using the updated version of our multiplume model. We have found that accounting for the gas production by Tiger Stripes is critical for interpretation of the Cassini data. According to our calculations, sources along the Tiger Stripes (apart from those originally identified by Spitale and Porco ()) must contribute about 23–32% to the total plume source rate, which varies in the range of (6.4–29) ×1027 s−1. The effect of the previously unidentified source suggested in the paper is found to be critical for explaining the Ultraviolet Imaging Spectrograph 2007 and 2010 observations in the whole range of the elapsed times.Key PointsThe effect of the sources located along the Tiger Stripes on the exosphereMethodology of the updated multiplume model is presentedThe model results are constrained by Cassini's INMS and UVIS measurements Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/110627/1/jgre20332.pdf |
format | Article in Journal/Newspaper |
genre | South pole |
genre_facet | South pole |
geographic | South Pole |
geographic_facet | South Pole |
id | ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/110627 |
institution | Open Polar |
language | unknown |
op_collection_id | ftumdeepblue |
op_container_end_page | 2667 |
op_relation | https://hdl.handle.net/2027.42/110627 doi:10.1002/2014JE004700 Journal of Geophysical Research: Planets Saur, J., N. Schilling, F. M. Neubauer, D. F. Strobel, S. Simon, M. K. Dougherty, C. T. Russell, and R. T. Pappalardo ( 2008 ), Evidence for temporal variability of Enceladus' gas jets: Modeling of Cassini observations, Geophys. Res. Lett., 35, L20105, doi:10.1029/2008GL035811. Dong, Y., T. W. Hill, B. D. Teolis, B. A. Magee, and J. H. Waite ( 2011 ), The water vapor plumes of Enceladus, J. Geophys. Res., 116, A10204, doi:10.1029/2011JA016693. Goguen, J. D., et al. ( 2013 ), The temperature and width of an active fissure on Enceladus measured with Cassini VIMS during the 14 April 2012 south pole flyover, Icarus, 226 ( 1 ), 1128 – 1137. Hansen, C. J., L. Esposito, A. I. F. Stewart, J. Colwell, A. Hendrix, W. Pryor, D. Shemansky, and R. West ( 2006 ), Enceladus' water vapor plume, Science, 311 ( 5766 ), 1422 – 1425. Hansen, C. J., L. W. Esposito, A. I. F. Stewart, B. Meinke, B. Wallis, J. E. Colwell, A. R. Hendrix, K. Larsen, W. Pryor, and F. Tian ( 2008 ), Water vapour jets inside the plume of gas leaving Enceladus, Nature, 456 ( 7221 ), 477 – 479. Hansen, C. J., et al. ( 2011 ), The composition and structure of the Enceladus plume, Geophys. Res. Lett., 38, L11202, doi:10.1029/2011GL047415. Hedman, M. M., P. D. Nicholson, M. R. Showalter, R. H. Brown, B. J. Buratti, and R. N. Clark ( 2009 ), Spectral observations of the Enceladus plume with CASSINI‐VIMS, Astron. J., 693, 1749 – 1762. Hedman, M. M., C. M. Gosmeyer, P. D. Nicholson, C. Sotin, R. H. Brown, R. N. Clark, K. H. Baines, B. J. Buratti, and M. R. Showalter ( 2013 ), An observed correlation between plume activity and tidal stresses on Enceladus, Nature, 500 ( 7461 ), 182 – 184. Howett, C. J. A., J. R. Spencer, J. Pearl, and M. Segura ( 2011 ), High heat flow from Enceladus' south polar region measured using 10–600 cm −1 Cassini/CIRS data, J. Geophys. Res., 116, E03003, doi:10.1029/2010JE003718. Hurford, T. A., B. G. Bills, P. Helfenstein, R. Greenberg, G. V. Hoppa, and D. P. Hamilton ( 2009 ), Geological implications of a physical libration on Enceladus, Icarus, 203 ( 2 ), 541 – 552. Hurford, T. A., P. Helfenstein, and J. N. Spitale ( 2012 ), Tidal control of jet eruptions on Enceladus as observed by Cassini ISS between 2005 and 2007, Icarus, 220 ( 2 ), 896 – 903. Ingersoll, A. P., and S. P. Ewald ( 2011 ), Total particulate mass in Enceladus plumes and mass of Saturn's E‐ring inferred from Cassini ISS images, Icarus, 216 ( 2 ), 492 – 506. Johnson, R. E., H. T. Smith, O. J. Tucker, M. Liu, M. H. Burger, E. C. Sittler, and R. L. Tokar ( 2006 ), The Enceladus and OH Tori at Saturn, Astrophys. J., 644 ( 2 ), L137 – L139. Mota, R., et al. ( 2005 ), Water VUV electronic state spectroscopy by synchrotron radiation, Chem. Phys. Lett., 416 ( 1–3 ), 152 – 159. Postberg, F., J. Schmidt, J. Hillier, S. Kempf, and R. Srama ( 2011 ), A salt‐water reservoir as the source of a compositionally stratified plume on Enceladus, Nature, 474, 620 – 622. Smith, H. T., R. E. Johnson, M. E. Perry, D. G. Mitchell, R. L. McNutt, and D. T. Young ( 2010 ), Enceladus plume variability and the neutral gas densities in Saturn's magnetosphere, J. Geophys. Res., 15, A10252, doi:10.1029/2009JA015184. Spencer, J. ( 2013 ), Solar system: Saturn's tides control Enceladus' plume, Nature, 500 ( 7461 ), 155 – 156. Spencer, J. R., C. J. A. Howett, A. Verbiscer, T. A. Hurford, M. Segura, and D. C. Spencer ( 2013 ), Enceladus heat flow from high spatial resolution thermal emission observations, EPSC Abstracts EPSC2013‐840‐1 paper presented at Eur. Planet. Sci. Congr. 2013, vol. 8. Spitale, J. N., and C. C. Porco ( 2007 ), Association of the jets of Enceladus with the warmest regions on its south‐polar fractures, Nature, 449, 695 – 697. Tenishev, V., M. R. Combi, B. D. Teolis, and J. H. Waite ( 2010 ), An approach to numerical simulation of the gas distribution in the atmosphere of Enceladus, J. Geophys. Res., 115, A09302, doi:10.1029/2009JA015223. Teolis, B., M. E. Perry, B. Magee, J. Westlake, and J. H. Waite Jr. ( 2010 ), Detection and measurement of ice grains and gas distribution in the Enceladus plume by Cassini's ion neutral mass spectrometer, J. Geophys. Res., 115, A09222, doi:10.1029/2009JA015192. Tian, F., A. I. F. Stewart, O. B. Toon, K. W. Larsen, and L. W. Esposito ( 2007 ), Monte Carlo simulations of the water vapor plumes on Enceladus, Icarus, 188 ( 1 ), 154 – 161. Waite, J. H., et al. ( 2006 ), Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure, Science, 311 ( 5766 ), 1419 – 1422. Spencer, J. R., and F. Nimmo ( 2013 ), Enceladus: An active ice world in the Saturn system, Annu. Rev. Earth Planet. Sci., 41, 693 – 717. Spencer, J. R., A. C. Barr, L. W. Esposito, P. Helfenstein, A. P. Ingersoll, R. Jaumann, C. P. McKay, F. Nimmo, and J. H. Waite ( 2009 ), Saturn From Cassini‐Huygen, Chap. Enceladus: An Active Cryovolcanic Satellite, 683 pp., Springer, Berlin. Burger, M. H., E. C. Sittler, R. E. Johnson, H. T. Smith, O. J. Tucker, and V. I. Shematovich ( 2007 ), Understanding the escape of water from Enceladus, J. Geophys. Res., 112, A06219, doi:10.1029/2006JA012086. |
op_rights | IndexNoFollow |
publishDate | 2014 |
publisher | Springer |
record_format | openpolar |
spelling | ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/110627 2025-06-15T14:49:36+00:00 Effect of the Tiger Stripes on the water vapor distribution in Enceladus' exosphere Tenishev, Valeriy Öztürk, Doğa Can Su Combi, Michael R. Rubin, Martin Waite, Jack Hunter Perry, Mark 2014-12 application/pdf https://hdl.handle.net/2027.42/110627 https://doi.org/10.1002/2014JE004700 unknown Springer Wiley Periodicals, Inc. https://hdl.handle.net/2027.42/110627 doi:10.1002/2014JE004700 Journal of Geophysical Research: Planets Saur, J., N. Schilling, F. M. Neubauer, D. F. Strobel, S. Simon, M. K. Dougherty, C. T. Russell, and R. T. Pappalardo ( 2008 ), Evidence for temporal variability of Enceladus' gas jets: Modeling of Cassini observations, Geophys. Res. Lett., 35, L20105, doi:10.1029/2008GL035811. Dong, Y., T. W. Hill, B. D. Teolis, B. A. Magee, and J. H. Waite ( 2011 ), The water vapor plumes of Enceladus, J. Geophys. Res., 116, A10204, doi:10.1029/2011JA016693. Goguen, J. D., et al. ( 2013 ), The temperature and width of an active fissure on Enceladus measured with Cassini VIMS during the 14 April 2012 south pole flyover, Icarus, 226 ( 1 ), 1128 – 1137. Hansen, C. J., L. Esposito, A. I. F. Stewart, J. Colwell, A. Hendrix, W. Pryor, D. Shemansky, and R. West ( 2006 ), Enceladus' water vapor plume, Science, 311 ( 5766 ), 1422 – 1425. Hansen, C. J., L. W. Esposito, A. I. F. Stewart, B. Meinke, B. Wallis, J. E. Colwell, A. R. Hendrix, K. Larsen, W. Pryor, and F. Tian ( 2008 ), Water vapour jets inside the plume of gas leaving Enceladus, Nature, 456 ( 7221 ), 477 – 479. Hansen, C. J., et al. ( 2011 ), The composition and structure of the Enceladus plume, Geophys. Res. Lett., 38, L11202, doi:10.1029/2011GL047415. Hedman, M. M., P. D. Nicholson, M. R. Showalter, R. H. Brown, B. J. Buratti, and R. N. Clark ( 2009 ), Spectral observations of the Enceladus plume with CASSINI‐VIMS, Astron. J., 693, 1749 – 1762. Hedman, M. M., C. M. Gosmeyer, P. D. Nicholson, C. Sotin, R. H. Brown, R. N. Clark, K. H. Baines, B. J. Buratti, and M. R. Showalter ( 2013 ), An observed correlation between plume activity and tidal stresses on Enceladus, Nature, 500 ( 7461 ), 182 – 184. Howett, C. J. A., J. R. Spencer, J. Pearl, and M. Segura ( 2011 ), High heat flow from Enceladus' south polar region measured using 10–600 cm −1 Cassini/CIRS data, J. Geophys. Res., 116, E03003, doi:10.1029/2010JE003718. Hurford, T. A., B. G. Bills, P. Helfenstein, R. Greenberg, G. V. Hoppa, and D. P. Hamilton ( 2009 ), Geological implications of a physical libration on Enceladus, Icarus, 203 ( 2 ), 541 – 552. Hurford, T. A., P. Helfenstein, and J. N. Spitale ( 2012 ), Tidal control of jet eruptions on Enceladus as observed by Cassini ISS between 2005 and 2007, Icarus, 220 ( 2 ), 896 – 903. Ingersoll, A. P., and S. P. Ewald ( 2011 ), Total particulate mass in Enceladus plumes and mass of Saturn's E‐ring inferred from Cassini ISS images, Icarus, 216 ( 2 ), 492 – 506. Johnson, R. E., H. T. Smith, O. J. Tucker, M. Liu, M. H. Burger, E. C. Sittler, and R. L. Tokar ( 2006 ), The Enceladus and OH Tori at Saturn, Astrophys. J., 644 ( 2 ), L137 – L139. Mota, R., et al. ( 2005 ), Water VUV electronic state spectroscopy by synchrotron radiation, Chem. Phys. Lett., 416 ( 1–3 ), 152 – 159. Postberg, F., J. Schmidt, J. Hillier, S. Kempf, and R. Srama ( 2011 ), A salt‐water reservoir as the source of a compositionally stratified plume on Enceladus, Nature, 474, 620 – 622. Smith, H. T., R. E. Johnson, M. E. Perry, D. G. Mitchell, R. L. McNutt, and D. T. Young ( 2010 ), Enceladus plume variability and the neutral gas densities in Saturn's magnetosphere, J. Geophys. Res., 15, A10252, doi:10.1029/2009JA015184. Spencer, J. ( 2013 ), Solar system: Saturn's tides control Enceladus' plume, Nature, 500 ( 7461 ), 155 – 156. Spencer, J. R., C. J. A. Howett, A. Verbiscer, T. A. Hurford, M. Segura, and D. C. Spencer ( 2013 ), Enceladus heat flow from high spatial resolution thermal emission observations, EPSC Abstracts EPSC2013‐840‐1 paper presented at Eur. Planet. Sci. Congr. 2013, vol. 8. Spitale, J. N., and C. C. Porco ( 2007 ), Association of the jets of Enceladus with the warmest regions on its south‐polar fractures, Nature, 449, 695 – 697. Tenishev, V., M. R. Combi, B. D. Teolis, and J. H. Waite ( 2010 ), An approach to numerical simulation of the gas distribution in the atmosphere of Enceladus, J. Geophys. Res., 115, A09302, doi:10.1029/2009JA015223. Teolis, B., M. E. Perry, B. Magee, J. Westlake, and J. H. Waite Jr. ( 2010 ), Detection and measurement of ice grains and gas distribution in the Enceladus plume by Cassini's ion neutral mass spectrometer, J. Geophys. Res., 115, A09222, doi:10.1029/2009JA015192. Tian, F., A. I. F. Stewart, O. B. Toon, K. W. Larsen, and L. W. Esposito ( 2007 ), Monte Carlo simulations of the water vapor plumes on Enceladus, Icarus, 188 ( 1 ), 154 – 161. Waite, J. H., et al. ( 2006 ), Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure, Science, 311 ( 5766 ), 1419 – 1422. Spencer, J. R., and F. Nimmo ( 2013 ), Enceladus: An active ice world in the Saturn system, Annu. Rev. Earth Planet. Sci., 41, 693 – 717. Spencer, J. R., A. C. Barr, L. W. Esposito, P. Helfenstein, A. P. Ingersoll, R. Jaumann, C. P. McKay, F. Nimmo, and J. H. Waite ( 2009 ), Saturn From Cassini‐Huygen, Chap. Enceladus: An Active Cryovolcanic Satellite, 683 pp., Springer, Berlin. Burger, M. H., E. C. Sittler, R. E. Johnson, H. T. Smith, O. J. Tucker, and V. I. Shematovich ( 2007 ), Understanding the escape of water from Enceladus, J. Geophys. Res., 112, A06219, doi:10.1029/2006JA012086. IndexNoFollow Enceladus Enceladus' plume Enceladus' exosphere Geological Sciences Science Article 2014 ftumdeepblue 2025-06-04T05:59:19Z The jet activity emanating from Enceladus' exosphere south pole region observed by Cassini is a subject of intensive study. The in situ and remote sensing observations performed since 2005 triggered an active modeling campaign. Such modeling is essential for better understanding of the measurements performed by individual instruments as well as to link them for a more complete picture of the volatile and ice grain distribution in Enceladus' exosphere. This paper is focused on the investigation of the effect that diffuse gas sources along the Tiger Stripes have on distribution of the water vapor in Enceladus' exosphere using the updated version of our multiplume model. We have found that accounting for the gas production by Tiger Stripes is critical for interpretation of the Cassini data. According to our calculations, sources along the Tiger Stripes (apart from those originally identified by Spitale and Porco ()) must contribute about 23–32% to the total plume source rate, which varies in the range of (6.4–29) ×1027 s−1. The effect of the previously unidentified source suggested in the paper is found to be critical for explaining the Ultraviolet Imaging Spectrograph 2007 and 2010 observations in the whole range of the elapsed times.Key PointsThe effect of the sources located along the Tiger Stripes on the exosphereMethodology of the updated multiplume model is presentedThe model results are constrained by Cassini's INMS and UVIS measurements Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/110627/1/jgre20332.pdf Article in Journal/Newspaper South pole Unknown South Pole Journal of Geophysical Research: Planets 119 12 2658 2667 |
spellingShingle | Enceladus Enceladus' plume Enceladus' exosphere Geological Sciences Science Tenishev, Valeriy Öztürk, Doğa Can Su Combi, Michael R. Rubin, Martin Waite, Jack Hunter Perry, Mark Effect of the Tiger Stripes on the water vapor distribution in Enceladus' exosphere |
title | Effect of the Tiger Stripes on the water vapor distribution in Enceladus' exosphere |
title_full | Effect of the Tiger Stripes on the water vapor distribution in Enceladus' exosphere |
title_fullStr | Effect of the Tiger Stripes on the water vapor distribution in Enceladus' exosphere |
title_full_unstemmed | Effect of the Tiger Stripes on the water vapor distribution in Enceladus' exosphere |
title_short | Effect of the Tiger Stripes on the water vapor distribution in Enceladus' exosphere |
title_sort | effect of the tiger stripes on the water vapor distribution in enceladus' exosphere |
topic | Enceladus Enceladus' plume Enceladus' exosphere Geological Sciences Science |
topic_facet | Enceladus Enceladus' plume Enceladus' exosphere Geological Sciences Science |
url | https://hdl.handle.net/2027.42/110627 https://doi.org/10.1002/2014JE004700 |