Aircraft soot indirect effect on large‐scale cirrus clouds: Is the indirect forcing by aircraft soot positive or negative?

The indirect effect of aircraft soot on cirrus clouds is subject to large uncertainties due to uncertainty in the effectiveness of aircraft soot acting as heterogeneous ice nuclei (IN) and the complexity caused by background ice nucleation, which introduces two major competing ice nucleation mechani...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Atmospheres
Main Authors: Zhou, Cheng, Penner, Joyce E.
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley Periodicals, Inc. 2014
Subjects:
Online Access:https://hdl.handle.net/2027.42/109301
https://doi.org/10.1002/2014JD021914
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/109301
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic Heterogeneous Ice Nuclei
Aerosol Indirect Effect
Aircraft Soot
Atmospheric and Oceanic Sciences
Science
spellingShingle Heterogeneous Ice Nuclei
Aerosol Indirect Effect
Aircraft Soot
Atmospheric and Oceanic Sciences
Science
Zhou, Cheng
Penner, Joyce E.
Aircraft soot indirect effect on large‐scale cirrus clouds: Is the indirect forcing by aircraft soot positive or negative?
topic_facet Heterogeneous Ice Nuclei
Aerosol Indirect Effect
Aircraft Soot
Atmospheric and Oceanic Sciences
Science
description The indirect effect of aircraft soot on cirrus clouds is subject to large uncertainties due to uncertainty in the effectiveness of aircraft soot acting as heterogeneous ice nuclei (IN) and the complexity caused by background ice nucleation, which introduces two major competing ice nucleation mechanisms: homogeneous freezing that generally produces more abundant ice particles and heterogeneous nucleation that generally produces fewer ice particles. In this paper, we used the coupled Community Atmosphere Model version 5.2 (CAM5)/IMPACT model to estimate the climate impacts of aircraft soot acting as IN in large‐scale cirrus clouds. We assume that only the aircraft soot particles that are preactivated in persistent contrail cirrus clouds are efficient IN. Further, we assume that these particles lose their ability to act as efficient IN when they become coated with three monolayers of sulfate. We varied the background number concentration of sulfate aerosols allowed to act as homogeneous ice nucleation sites as well as the dust concentrations that act as heterogeneous ice nuclei to examine the sensitivity of the forcing by aircraft soot to the background atmosphere. The global average effect can range from a high negative (cooling) rate, −0.35 W m −2 , for the high sulfate/low dust case to a positive (warming) rate, +0.09 W m −2 , for the low sulfate/low dust case (default CAM5 setup) when approximately 0.6% of total aviation soot acts as IN. The net negative forcing is caused by the addition of IN to a background atmosphere that is dominated by homogeneous nucleation (mainly in the tropic Indian Ocean, Central America, and North Atlantic Ocean). The forcings can be all positive, about +0.11 to +0.21 W m −2 , when the background atmosphere is dominated by pure heterogeneous ice nucleation. Key Points AIE of aircraft soot on cirrus clouds is from −0.35 W m −2 to 0.09 W m −2 The uncertainty is caused by the background sulfate and dust number Peer Reviewed ...
format Article in Journal/Newspaper
author Zhou, Cheng
Penner, Joyce E.
author_facet Zhou, Cheng
Penner, Joyce E.
author_sort Zhou, Cheng
title Aircraft soot indirect effect on large‐scale cirrus clouds: Is the indirect forcing by aircraft soot positive or negative?
title_short Aircraft soot indirect effect on large‐scale cirrus clouds: Is the indirect forcing by aircraft soot positive or negative?
title_full Aircraft soot indirect effect on large‐scale cirrus clouds: Is the indirect forcing by aircraft soot positive or negative?
title_fullStr Aircraft soot indirect effect on large‐scale cirrus clouds: Is the indirect forcing by aircraft soot positive or negative?
title_full_unstemmed Aircraft soot indirect effect on large‐scale cirrus clouds: Is the indirect forcing by aircraft soot positive or negative?
title_sort aircraft soot indirect effect on large‐scale cirrus clouds: is the indirect forcing by aircraft soot positive or negative?
publisher Wiley Periodicals, Inc.
publishDate 2014
url https://hdl.handle.net/2027.42/109301
https://doi.org/10.1002/2014JD021914
geographic Indian
geographic_facet Indian
genre North Atlantic
genre_facet North Atlantic
op_relation Zhou, Cheng; Penner, Joyce E. (2014). "Aircraft soot indirect effect on large‐scale cirrus clouds: Is the indirect forcing by aircraft soot positive or negative?." Journal of Geophysical Research: Atmospheres 119(19): 11,303-11,320.
2169-897X
2169-8996
https://hdl.handle.net/2027.42/109301
doi:10.1002/2014JD021914
Journal of Geophysical Research: Atmospheres
Murray, B. J., et al. ( 2010 ), Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions, Nat. Geosci., 3, 233 – 237.
Liu, X., X. Shi, K. Zhang, E. J. Jensen, A. Gettelman, D. Barahona, A. Nenes, and P. Lawson ( 2012b ), Sensitivity studies of dust ice nuclei effect on cirrus clouds with the Community Atmosphere Model CAM5, Atmos. Chem. Phys., 12, 12,061 – 12,079, doi:10.5194/acp‐12‐12061‐2012.
Minnis, P., D. F. Young, D. P. Garber, L. Nguyen, W. L. Smith Jr., and R. Palikonda ( 1998 ), Transformation of contrails into cirrus during SUCCESS, Geophys. Res. Lett., 25, 1157 – 1160, doi:10.1029/97GL03314.
Minnis, P., S. T. Bedka, D. P. Duda, K. M. Bedka, T. Chee, J. K. Ayers, R. Palikonda, D. A. Spangenberg, K. V. Khlopenkov, and R. Boeke ( 2013 ), Linear contrail and contrail cirrus properties determined from satellite data, Geophys. Res. Lett., 40, 3220 – 3226, doi:10.1002/grl.50569.
Möhler, O., et al. ( 2006 ), Efficiency of the deposition mode ice nucleation on mineral dust particles, Atmos. Chem. Phys., 6 ( 10 ), 3007 – 3021.
Möhler, O., et al. ( 2008 ), The effect of organic coating on the heterogeneous ice nucleation efficiency of mineral dust aerosols, Environ. Res. Lett., 3 ( 2 ), 025007, doi:10.1088/1748‐9326/3/2/025007.
Penner, J. E., Y. Chen, M. Wang, and X. Liu ( 2009 ), Possible influence of anthropogenic aerosols on cirrus clouds and anthropogenic forcing, Atmos. Chem. Phys., 9, 879 – 896, doi:10.5194/acp‐9‐879‐2009.
Rogers, D. C., P. J. DeMott, S. M. Kreidenweis, and Y. Chen ( 1998 ), Measurements of ice nucleating aerosols during SUCCESS, Geophys. Res. Lett., 25, 1383 – 1386, doi:10.1029/97GL03478.
Schmidt, E. ( 1941 ), Die Entstehung von Eisnebel aus den Auspuffgasen von Flugmotoren, Schr. Dtsch. Akad. Luftfahrtforsch., 44, 1 – 15.
Schumann, U. ( 1996 ), On conditions for contrail formation from aircraft exhausts, Meteorol. Z., 5, 4 – 24.
Schumann, U., and K. Graf ( 2013 ), Aviation‐induced cirrus and radiation changes at diurnal timescales, J. Geophys. Res. Atmos., 118, 2404 – 2421, doi:10.1002/jgrd.50184.
Spangenberg, D. A., P. Minnis, S. T. Bedka, R. Palikonda, D. P. Duda, and F. G. Rose ( 2013 ), Contrail radiative forcing over the Northern Hemisphere from 2006 Aqua MODIS data, Geophys. Res. Lett., 40, 595 – 600, doi:10.1002/grl.50168.
Spichtinger, P., and M. Krämer ( 2012 ), Tropical tropopause ice clouds: A dynamic approach to the mystery of low crystal numbers, Atmos. Chem. Phys. Discuss., 12, 28,109 – 28,153, doi:10.5194/acpd‐12‐28109‐2012.
Wagner, R., O. Möhler, H. Saathoff, M. Schnaiter, J. Skrotzki, T. Leisner, T. W. Wilson, T. L. Malkin, and B. J. Murray ( 2012 ), Ice cloud processing of ultra‐viscous/glassy aerosol particles leads to enhanced ice nucleation ability, Atmos. Chem. Phys., 12, 8589 – 8610, doi:10.5194/acp‐12‐8589‐2012.
Welti, A., F. Lüönd, O. Stetzer, and U. Lohmann ( 2009 ), Influence of particle size on the ice nucleating ability of mineral dusts, Atmos. Chem. Phys., 9 ( 18 ), 6705 – 6715, doi:10.5194/acp‐9‐6705‐2009.
Yi, B., P. Yang, K.‐N. Liou, P. Minnis, and J. E. Penner ( 2012 ), Simulation of the global contrail radiative forcing: A sensitivity analysis, Geophys. Res. Lett., 39, L00F03, doi:10.1029/2012GL054042.
Zhang, K., X. Liu, M. Wang, J. M. Comstock, D. L. Mitchell, S. Mishra, and G. G. Mace ( 2013 ), Evaluating and constraining ice cloud parameterizations in CAM5 using aircraft measurements from the SPARTICUS campaign, Atmos. Chem. Phys., 13, 4963 – 4982, doi:10.5194/acp‐13‐4963‐2013.
Zhou, C., J. E. Penner, Y. Ming, and X. L. Huang ( 2012 ), Aerosol forcing based on CAM5 and AM3 meteorological fields, Atmos. Chem. Phys., 12, 9629 – 9652, doi:10.5194/acp‐12‐9629‐2012.
Adler, G., T. Koop, C. Haspel, I. Taraniuk, T. Moise, I. Koren, R. H. Heiblum, and Y. Rudich ( 2013 ), Formation of highly porous aerosol particles by atmospheric freeze‐drying in ice clouds, Proc. Natl. Acad. Sci. U.S.A., 110 ( 51 ), 20,414 – 20,419.
Appleman, H. ( 1953 ), The formation of exhaust condensation trails by jet aircraft, Bull. Am. Meteorol. Soc., 34, 14 – 20.
Barahona, D., and A. Nenes ( 2011 ), Dynamical states of low temperature cirrus, Atmos. Chem. Phys., 11, 3757 – 3771, doi:10.5194/acp‐11‐3757‐2011.
Barrett, S., et al. ( 2010 ), Guidance on the use of AEDT gridded aircraft emissions in atmospheric models, version 2.0, Tech. Rep., Federal Aviation Administration.
Burkhardt, U., and B. Kärcher ( 2011 ), Global radiative forcing from contrail cirrus, Nat. Clim. Change, 1, 54 – 58, doi:10.1038/nclimate1068.
Chen, C.‐C., A. Gettelman, C. Craig, P. Minnis, and D. P. Duda ( 2012 ), Global contrail coverage simulated by CAM5 with the inventory of 2006 global aircraft emissions, J. Adv. Model. Earth Syst., 4, M04003, doi:10.1029/2011MS000105.
Cziczo, D. J., K. D. Froyd, S. J. Gallavardin, O. Moehler, S. Benz, H. Saathoff, and D. M. Murphy ( 2009 ), Deactivation of ice nuclei due to atmospherically relevant surface coatings, Environ. Res. Lett., 4, 044013, doi:10.1088/1748‐9326/4/4/044013.
Cziczo, D. J., K. D. Froyd, C. Hoose, E. J. Jensen, M. Diao, M. A. Zondlo, J. B. Smith, C. H. Twohy, and D. M. Murphy ( 2013 ), Clarifying the dominant sources and mechanisms of cirrus cloud formation, Science, 340 ( 6138 ), 1320 – 1324.
Duda, D. P., P. Minnis, K. Khlopenkov, T. L. Chee, and R. Boeke ( 2013 ), Estimation of 2006 Northern Hemisphere contrail coverage using MODIS data, Geophys. Res. Lett., 40, 612 – 617, doi:10.1002/grl.50097.
Edwards, G. R., L. F. Evans, and A. F. Zipper ( 1970 ), Two‐dimensional phase changes in water adsorbed on ice‐nucleating substrates, Trans. Faraday Soc., 66, 220 – 234.
Evans, L. F. ( 1967 ), Two‐dimensional nucleation of ice, Nature, 213, 384 – 385.
Gettelman, A., and C. Chen ( 2013 ), The climate impact of aviation aerosols, Geophys. Res. Lett., 40, 2785 – 2789, doi:10.1002/grl.50520.
Gettelman, A., X. Liu, S. J. Ghan, H. Morrison, S. Park, A. J. Conley, S. A. Klein, J. Boyle, D. L. Mitchell, and J.‐L. F. Li ( 2010 ), Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the community atmosphere model, J. Geophys. Res., 115, D18216, doi:10.1029/2009JD013797.
Gettelman, A., X. Liu, D. Barahona, U. Lohmann, and C. Chen ( 2012 ), Climate impacts of ice nucleation, J. Geophys. Res., 117, D20201, doi:10.1029/2012JD017950.
Hendricks, J., B. Kärcher, U. Lohmann, and M. Ponater ( 2005 ), Do aircraft black carbon emissions affect cirrus clouds on the global scale?, Geophys. Res. Lett., 32, L12814, doi:10.1029/2005GL022740.
Hendricks, J., B. Kärcher, and U. Lohmann ( 2011 ), Effects of ice nuclei on cirrus clouds in a global climate model, J. Geophys. Res., 116, D18206, doi:10.1029/2010JD015302.
Jensen, E. J., et al. ( 2009 ), On the importance of small ice crystals in tropical anvil cirrus, Atmos. Chem. Phys., 9, 5519 – 5537, doi:10.5194/acp‐9‐5519‐2009.
Jensen, E. J., L. Pfister, T.‐P. Bui, P. Lawson, and D. Baumgardner ( 2010 ), Ice nucleation and cloud microphysical properties in tropical tropopause layer cirrus, Atmos. Chem. Phys., 10, 1369 – 1384, doi:10.5194/acp‐10‐1369‐2010.
Jensen, E. J., G. Diskin, R. P. Lawson, S. Lance, T. P. Bui, D. Hlavka, M. McGill, L. Pfister, O. B. Toon, and R. Gao ( 2013 ), Ice nucleation and dehydration in the Tropical Tropopause Layer, Proc. Natl. Acad. Sci. U.S.A., 110, 2041 – 2046, doi:10.1073/pnas.1217104110.
Kärcher, B., and J. Ström ( 2003 ), The roles of dynamical variability and aerosols in cirrus cloud formation, Atmos. Chem. Phys., 3, 823 – 838, doi:10.5194/acp‐3‐823‐2003.
Kärcher, B., O. Möhler, P. J. DeMott, S. Pechtl, and S. Yu ( 2007 ), Insights into the role of soot aerosols in cirrus cloud formation, Atmos. Chem. Phys., 7, 4203 – 4227.
Koehler, K. A., P. J. DeMott, S. M. Kreidenweis, O. B. Popovicheva, M. D. Petters, C. M. Carrico, E. D. Kireeva, T. D. Khokhlova, and N. K. Shonija ( 2009 ), Cloud condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic soot particles, Phys. Chem. Chem. Phys., 11, 7906 – 7920.
Krämer, M., et al. ( 2009 ), Ice supersaturations and cirrus cloud crystal numbers, Atmos. Chem. Phys., 9, 3505 – 3522, doi:10.5194/acp‐9‐3505‐2009.
Kuebbeler, M., U. Lohmann, J. Hendricks, and B. Kärcher ( 2014 ), Dust ice nuclei effects on cirrus clouds, Atmos. Chem. Phys., 14, 3027 – 3046, doi:10.5194/acp‐14‐3027‐2014.
Lee, D. S., D. W. Fahey, P. M. Forster, P. J. Newton, R. C. N. Wit, L. L. Lim, B. Owen, and R. Sausen ( 2009 ), Aviation and global climate change in the 21st century, Atmos. Env., 43, 3520 – 3537, doi:10.1016/j.atmosenv.2009.04.024.
Liu, X., and J. E. Penner ( 2005 ), Ice nucleation parameterization for global models, Meteorol. Z., 14, 499 – 514.
op_rights IndexNoFollow
op_doi https://doi.org/10.1002/2014JD02191410.5194/acp‐12‐12061‐201210.1029/97GL0331410.1002/grl.5056910.1088/1748‐9326/3/2/02500710.5194/acp‐9‐879‐200910.1029/97GL0347810.1002/jgrd.5018410.1002/grl.5016810.5194/acpd‐12‐28109‐201210.5194/acp‐12‐8589‐201210.5194/
container_title Journal of Geophysical Research: Atmospheres
container_volume 119
container_issue 19
container_start_page 11,303
op_container_end_page 11,320
_version_ 1774720895383764992
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/109301 2023-08-20T04:08:34+02:00 Aircraft soot indirect effect on large‐scale cirrus clouds: Is the indirect forcing by aircraft soot positive or negative? Zhou, Cheng Penner, Joyce E. 2014-10-16 application/pdf https://hdl.handle.net/2027.42/109301 https://doi.org/10.1002/2014JD021914 unknown Wiley Periodicals, Inc. Zhou, Cheng; Penner, Joyce E. (2014). "Aircraft soot indirect effect on large‐scale cirrus clouds: Is the indirect forcing by aircraft soot positive or negative?." Journal of Geophysical Research: Atmospheres 119(19): 11,303-11,320. 2169-897X 2169-8996 https://hdl.handle.net/2027.42/109301 doi:10.1002/2014JD021914 Journal of Geophysical Research: Atmospheres Murray, B. J., et al. ( 2010 ), Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions, Nat. Geosci., 3, 233 – 237. Liu, X., X. Shi, K. Zhang, E. J. Jensen, A. Gettelman, D. Barahona, A. Nenes, and P. Lawson ( 2012b ), Sensitivity studies of dust ice nuclei effect on cirrus clouds with the Community Atmosphere Model CAM5, Atmos. Chem. Phys., 12, 12,061 – 12,079, doi:10.5194/acp‐12‐12061‐2012. Minnis, P., D. F. Young, D. P. Garber, L. Nguyen, W. L. Smith Jr., and R. Palikonda ( 1998 ), Transformation of contrails into cirrus during SUCCESS, Geophys. Res. Lett., 25, 1157 – 1160, doi:10.1029/97GL03314. Minnis, P., S. T. Bedka, D. P. Duda, K. M. Bedka, T. Chee, J. K. Ayers, R. Palikonda, D. A. Spangenberg, K. V. Khlopenkov, and R. Boeke ( 2013 ), Linear contrail and contrail cirrus properties determined from satellite data, Geophys. Res. Lett., 40, 3220 – 3226, doi:10.1002/grl.50569. Möhler, O., et al. ( 2006 ), Efficiency of the deposition mode ice nucleation on mineral dust particles, Atmos. Chem. Phys., 6 ( 10 ), 3007 – 3021. Möhler, O., et al. ( 2008 ), The effect of organic coating on the heterogeneous ice nucleation efficiency of mineral dust aerosols, Environ. Res. Lett., 3 ( 2 ), 025007, doi:10.1088/1748‐9326/3/2/025007. Penner, J. E., Y. Chen, M. Wang, and X. Liu ( 2009 ), Possible influence of anthropogenic aerosols on cirrus clouds and anthropogenic forcing, Atmos. Chem. Phys., 9, 879 – 896, doi:10.5194/acp‐9‐879‐2009. Rogers, D. C., P. J. DeMott, S. M. Kreidenweis, and Y. Chen ( 1998 ), Measurements of ice nucleating aerosols during SUCCESS, Geophys. Res. Lett., 25, 1383 – 1386, doi:10.1029/97GL03478. Schmidt, E. ( 1941 ), Die Entstehung von Eisnebel aus den Auspuffgasen von Flugmotoren, Schr. Dtsch. Akad. Luftfahrtforsch., 44, 1 – 15. Schumann, U. ( 1996 ), On conditions for contrail formation from aircraft exhausts, Meteorol. Z., 5, 4 – 24. Schumann, U., and K. Graf ( 2013 ), Aviation‐induced cirrus and radiation changes at diurnal timescales, J. Geophys. Res. Atmos., 118, 2404 – 2421, doi:10.1002/jgrd.50184. Spangenberg, D. A., P. Minnis, S. T. Bedka, R. Palikonda, D. P. Duda, and F. G. Rose ( 2013 ), Contrail radiative forcing over the Northern Hemisphere from 2006 Aqua MODIS data, Geophys. Res. Lett., 40, 595 – 600, doi:10.1002/grl.50168. Spichtinger, P., and M. Krämer ( 2012 ), Tropical tropopause ice clouds: A dynamic approach to the mystery of low crystal numbers, Atmos. Chem. Phys. Discuss., 12, 28,109 – 28,153, doi:10.5194/acpd‐12‐28109‐2012. Wagner, R., O. Möhler, H. Saathoff, M. Schnaiter, J. Skrotzki, T. Leisner, T. W. Wilson, T. L. Malkin, and B. J. Murray ( 2012 ), Ice cloud processing of ultra‐viscous/glassy aerosol particles leads to enhanced ice nucleation ability, Atmos. Chem. Phys., 12, 8589 – 8610, doi:10.5194/acp‐12‐8589‐2012. Welti, A., F. Lüönd, O. Stetzer, and U. Lohmann ( 2009 ), Influence of particle size on the ice nucleating ability of mineral dusts, Atmos. Chem. Phys., 9 ( 18 ), 6705 – 6715, doi:10.5194/acp‐9‐6705‐2009. Yi, B., P. Yang, K.‐N. Liou, P. Minnis, and J. E. Penner ( 2012 ), Simulation of the global contrail radiative forcing: A sensitivity analysis, Geophys. Res. Lett., 39, L00F03, doi:10.1029/2012GL054042. Zhang, K., X. Liu, M. Wang, J. M. Comstock, D. L. Mitchell, S. Mishra, and G. G. Mace ( 2013 ), Evaluating and constraining ice cloud parameterizations in CAM5 using aircraft measurements from the SPARTICUS campaign, Atmos. Chem. Phys., 13, 4963 – 4982, doi:10.5194/acp‐13‐4963‐2013. Zhou, C., J. E. Penner, Y. Ming, and X. L. Huang ( 2012 ), Aerosol forcing based on CAM5 and AM3 meteorological fields, Atmos. Chem. Phys., 12, 9629 – 9652, doi:10.5194/acp‐12‐9629‐2012. Adler, G., T. Koop, C. Haspel, I. Taraniuk, T. Moise, I. Koren, R. H. Heiblum, and Y. Rudich ( 2013 ), Formation of highly porous aerosol particles by atmospheric freeze‐drying in ice clouds, Proc. Natl. Acad. Sci. U.S.A., 110 ( 51 ), 20,414 – 20,419. Appleman, H. ( 1953 ), The formation of exhaust condensation trails by jet aircraft, Bull. Am. Meteorol. Soc., 34, 14 – 20. Barahona, D., and A. Nenes ( 2011 ), Dynamical states of low temperature cirrus, Atmos. Chem. Phys., 11, 3757 – 3771, doi:10.5194/acp‐11‐3757‐2011. Barrett, S., et al. ( 2010 ), Guidance on the use of AEDT gridded aircraft emissions in atmospheric models, version 2.0, Tech. Rep., Federal Aviation Administration. Burkhardt, U., and B. Kärcher ( 2011 ), Global radiative forcing from contrail cirrus, Nat. Clim. Change, 1, 54 – 58, doi:10.1038/nclimate1068. Chen, C.‐C., A. Gettelman, C. Craig, P. Minnis, and D. P. Duda ( 2012 ), Global contrail coverage simulated by CAM5 with the inventory of 2006 global aircraft emissions, J. Adv. Model. Earth Syst., 4, M04003, doi:10.1029/2011MS000105. Cziczo, D. J., K. D. Froyd, S. J. Gallavardin, O. Moehler, S. Benz, H. Saathoff, and D. M. Murphy ( 2009 ), Deactivation of ice nuclei due to atmospherically relevant surface coatings, Environ. Res. Lett., 4, 044013, doi:10.1088/1748‐9326/4/4/044013. Cziczo, D. J., K. D. Froyd, C. Hoose, E. J. Jensen, M. Diao, M. A. Zondlo, J. B. Smith, C. H. Twohy, and D. M. Murphy ( 2013 ), Clarifying the dominant sources and mechanisms of cirrus cloud formation, Science, 340 ( 6138 ), 1320 – 1324. Duda, D. P., P. Minnis, K. Khlopenkov, T. L. Chee, and R. Boeke ( 2013 ), Estimation of 2006 Northern Hemisphere contrail coverage using MODIS data, Geophys. Res. Lett., 40, 612 – 617, doi:10.1002/grl.50097. Edwards, G. R., L. F. Evans, and A. F. Zipper ( 1970 ), Two‐dimensional phase changes in water adsorbed on ice‐nucleating substrates, Trans. Faraday Soc., 66, 220 – 234. Evans, L. F. ( 1967 ), Two‐dimensional nucleation of ice, Nature, 213, 384 – 385. Gettelman, A., and C. Chen ( 2013 ), The climate impact of aviation aerosols, Geophys. Res. Lett., 40, 2785 – 2789, doi:10.1002/grl.50520. Gettelman, A., X. Liu, S. J. Ghan, H. Morrison, S. Park, A. J. Conley, S. A. Klein, J. Boyle, D. L. Mitchell, and J.‐L. F. Li ( 2010 ), Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the community atmosphere model, J. Geophys. Res., 115, D18216, doi:10.1029/2009JD013797. Gettelman, A., X. Liu, D. Barahona, U. Lohmann, and C. Chen ( 2012 ), Climate impacts of ice nucleation, J. Geophys. Res., 117, D20201, doi:10.1029/2012JD017950. Hendricks, J., B. Kärcher, U. Lohmann, and M. Ponater ( 2005 ), Do aircraft black carbon emissions affect cirrus clouds on the global scale?, Geophys. Res. Lett., 32, L12814, doi:10.1029/2005GL022740. Hendricks, J., B. Kärcher, and U. Lohmann ( 2011 ), Effects of ice nuclei on cirrus clouds in a global climate model, J. Geophys. Res., 116, D18206, doi:10.1029/2010JD015302. Jensen, E. J., et al. ( 2009 ), On the importance of small ice crystals in tropical anvil cirrus, Atmos. Chem. Phys., 9, 5519 – 5537, doi:10.5194/acp‐9‐5519‐2009. Jensen, E. J., L. Pfister, T.‐P. Bui, P. Lawson, and D. Baumgardner ( 2010 ), Ice nucleation and cloud microphysical properties in tropical tropopause layer cirrus, Atmos. Chem. Phys., 10, 1369 – 1384, doi:10.5194/acp‐10‐1369‐2010. Jensen, E. J., G. Diskin, R. P. Lawson, S. Lance, T. P. Bui, D. Hlavka, M. McGill, L. Pfister, O. B. Toon, and R. Gao ( 2013 ), Ice nucleation and dehydration in the Tropical Tropopause Layer, Proc. Natl. Acad. Sci. U.S.A., 110, 2041 – 2046, doi:10.1073/pnas.1217104110. Kärcher, B., and J. Ström ( 2003 ), The roles of dynamical variability and aerosols in cirrus cloud formation, Atmos. Chem. Phys., 3, 823 – 838, doi:10.5194/acp‐3‐823‐2003. Kärcher, B., O. Möhler, P. J. DeMott, S. Pechtl, and S. Yu ( 2007 ), Insights into the role of soot aerosols in cirrus cloud formation, Atmos. Chem. Phys., 7, 4203 – 4227. Koehler, K. A., P. J. DeMott, S. M. Kreidenweis, O. B. Popovicheva, M. D. Petters, C. M. Carrico, E. D. Kireeva, T. D. Khokhlova, and N. K. Shonija ( 2009 ), Cloud condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic soot particles, Phys. Chem. Chem. Phys., 11, 7906 – 7920. Krämer, M., et al. ( 2009 ), Ice supersaturations and cirrus cloud crystal numbers, Atmos. Chem. Phys., 9, 3505 – 3522, doi:10.5194/acp‐9‐3505‐2009. Kuebbeler, M., U. Lohmann, J. Hendricks, and B. Kärcher ( 2014 ), Dust ice nuclei effects on cirrus clouds, Atmos. Chem. Phys., 14, 3027 – 3046, doi:10.5194/acp‐14‐3027‐2014. Lee, D. S., D. W. Fahey, P. M. Forster, P. J. Newton, R. C. N. Wit, L. L. Lim, B. Owen, and R. Sausen ( 2009 ), Aviation and global climate change in the 21st century, Atmos. Env., 43, 3520 – 3537, doi:10.1016/j.atmosenv.2009.04.024. Liu, X., and J. E. Penner ( 2005 ), Ice nucleation parameterization for global models, Meteorol. Z., 14, 499 – 514. IndexNoFollow Heterogeneous Ice Nuclei Aerosol Indirect Effect Aircraft Soot Atmospheric and Oceanic Sciences Science Article 2014 ftumdeepblue https://doi.org/10.1002/2014JD02191410.5194/acp‐12‐12061‐201210.1029/97GL0331410.1002/grl.5056910.1088/1748‐9326/3/2/02500710.5194/acp‐9‐879‐200910.1029/97GL0347810.1002/jgrd.5018410.1002/grl.5016810.5194/acpd‐12‐28109‐201210.5194/acp‐12‐8589‐201210.5194/ 2023-07-31T21:04:27Z The indirect effect of aircraft soot on cirrus clouds is subject to large uncertainties due to uncertainty in the effectiveness of aircraft soot acting as heterogeneous ice nuclei (IN) and the complexity caused by background ice nucleation, which introduces two major competing ice nucleation mechanisms: homogeneous freezing that generally produces more abundant ice particles and heterogeneous nucleation that generally produces fewer ice particles. In this paper, we used the coupled Community Atmosphere Model version 5.2 (CAM5)/IMPACT model to estimate the climate impacts of aircraft soot acting as IN in large‐scale cirrus clouds. We assume that only the aircraft soot particles that are preactivated in persistent contrail cirrus clouds are efficient IN. Further, we assume that these particles lose their ability to act as efficient IN when they become coated with three monolayers of sulfate. We varied the background number concentration of sulfate aerosols allowed to act as homogeneous ice nucleation sites as well as the dust concentrations that act as heterogeneous ice nuclei to examine the sensitivity of the forcing by aircraft soot to the background atmosphere. The global average effect can range from a high negative (cooling) rate, −0.35 W m −2 , for the high sulfate/low dust case to a positive (warming) rate, +0.09 W m −2 , for the low sulfate/low dust case (default CAM5 setup) when approximately 0.6% of total aviation soot acts as IN. The net negative forcing is caused by the addition of IN to a background atmosphere that is dominated by homogeneous nucleation (mainly in the tropic Indian Ocean, Central America, and North Atlantic Ocean). The forcings can be all positive, about +0.11 to +0.21 W m −2 , when the background atmosphere is dominated by pure heterogeneous ice nucleation. Key Points AIE of aircraft soot on cirrus clouds is from −0.35 W m −2 to 0.09 W m −2 The uncertainty is caused by the background sulfate and dust number Peer Reviewed ... Article in Journal/Newspaper North Atlantic University of Michigan: Deep Blue Indian Journal of Geophysical Research: Atmospheres 119 19 11,303 11,320