Accuracy assessment of global barotropic ocean tide models
The accuracy of state‐of‐the‐art global barotropic tide models is assessed using bottom pressure data, coastal tide gauges, satellite altimetry, various geodetic data on Antarctic ice shelves, and independent tracked satellite orbit perturbations. Tide models under review include empirical, purely h...
Published in: | Reviews of Geophysics |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
Wiley Periodicals, Inc.
2014
|
Subjects: | |
Online Access: | http://hdl.handle.net/2027.42/109292 https://doi.org/10.1002/2014RG000450 |
_version_ | 1835015620864770048 |
---|---|
author | Stammer, D. Ray, R.D. Andersen, O.B. Arbic, B.K. Bosch, W. Carrère, L. Cheng, Y. Chinn, D.S. Dushaw, B.D. Egbert, G.D. Erofeeva, S.Y. Fok, H.S. Green, J.A.M. Griffiths, S. King, M.A. Lapin, V. Lemoine, F.G. Luthcke, S.B. Lyard, F. Morison, J. Müller, M. Padman, L. Richman, J.G. Shriver, J.F. Shum, C.K. Taguchi, E. Yi, Y. |
author_facet | Stammer, D. Ray, R.D. Andersen, O.B. Arbic, B.K. Bosch, W. Carrère, L. Cheng, Y. Chinn, D.S. Dushaw, B.D. Egbert, G.D. Erofeeva, S.Y. Fok, H.S. Green, J.A.M. Griffiths, S. King, M.A. Lapin, V. Lemoine, F.G. Luthcke, S.B. Lyard, F. Morison, J. Müller, M. Padman, L. Richman, J.G. Shriver, J.F. Shum, C.K. Taguchi, E. Yi, Y. |
author_sort | Stammer, D. |
collection | Unknown |
container_issue | 3 |
container_start_page | 243 |
container_title | Reviews of Geophysics |
container_volume | 52 |
description | The accuracy of state‐of‐the‐art global barotropic tide models is assessed using bottom pressure data, coastal tide gauges, satellite altimetry, various geodetic data on Antarctic ice shelves, and independent tracked satellite orbit perturbations. Tide models under review include empirical, purely hydrodynamic (“forward”), and assimilative dynamical, i.e., constrained by observations. Ten dominant tidal constituents in the diurnal, semidiurnal, and quarter‐diurnal bands are considered. Since the last major model comparison project in 1997, models have improved markedly, especially in shallow‐water regions and also in the deep ocean. The root‐sum‐square differences between tide observations and the best models for eight major constituents are approximately 0.9, 5.0, and 6.5 cm for pelagic, shelf, and coastal conditions, respectively. Large intermodel discrepancies occur in high latitudes, but testing in those regions is impeded by the paucity of high‐quality in situ tide records. Long‐wavelength components of models tested by analyzing satellite laser ranging measurements suggest that several models are comparably accurate for use in precise orbit determination, but analyses of GRACE intersatellite ranging data show that all models are still imperfect on basin and subbasin scales, especially near Antarctica. For the M 2 constituent, errors in purely hydrodynamic models are now almost comparable to the 1980‐era Schwiderski empirical solution, indicating marked advancement in dynamical modeling. Assessing model accuracy using tidal currents remains problematic owing to uncertainties in in situ current meter estimates and the inability to isolate the barotropic mode. Velocity tests against both acoustic tomography and current meters do confirm that assimilative models perform better than purely hydrodynamic models. Key Points Tide model accuracy assessment Improved accuracies Tidal current estimates Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/109292/1/rog20044.pdf |
format | Article in Journal/Newspaper |
genre | Antarc* Antarctic Antarctica Ice Shelves |
genre_facet | Antarc* Antarctic Antarctica Ice Shelves |
geographic | Antarctic |
geographic_facet | Antarctic |
id | ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/109292 |
institution | Open Polar |
language | unknown |
op_collection_id | ftumdeepblue |
op_container_end_page | 282 |
op_relation | http://hdl.handle.net/2027.42/109292 doi:10.1002/2014RG000450 Reviews of Geophysics Ray, R. D. ( 2001 ), Inversion of oceanic tidal currents from measured elevations, J. Mar. Syst., 28, 1 – 18. Ponchaut, F., F. Lyard, and C. Le Provost ( 2001 ), An analysis of the tidal signal in the WOCE sea level dataset, J. Atmos. Oceanic Technol., 18, 77 – 91, doi:10.1175/1520‐0426(2001)018<0077:AAOTTS>2.0.CO;2. Pugh, D. T. ( 1987 ), Tides, Surges and Mean Sea‐Level: A Handbook for Scientists and Engineers, 472 pp., John Wiley, Chichester, U. K. Pugh, D. T., and P. L. Woodworth ( 2014 ), Sea‐Level Science: Understanding Tides, Surges Tsunamis and Mean Sea‐Level Changes, 407 pp., Cambridge Univ. Press, Cambridge, U. K. Ray, R. D. ( 1999 ), A global ocean tide model from Topex/Poseidon altimetry: GOT99.2, NASA Tech. Memo. 209478, 58 pp., Goddard Space Flight Center, Greenbelt, MD. Ray, R. D. ( 2008 ), A preliminary tidal analysis of ICESat laser altimetry: Southern Ross Ice Shelf, Geophys. Res. Lett., 35, L02505, doi:10.1029/2007GL032125. Ray, R. D. ( 2013 ), Precise comparisons of bottom‐pressure and altimetric ocean tides, J. Geophys. Res. Oceans, 118, 4570 – 4584, doi:10.1002/jgrc.20336. Ray, R. D., and G. D. Egbert ( 1997 ), The flux of tidal energy across latitude 60°S, Geophys. Res. Lett., 24, 543 – 546. Ray, R. D., S. B. Luthcke, and J.‐P. Boy ( 2009 ), Qualitative comparisons of global ocean tide models by analysis of intersatellite ranging data, J. Geophys. Res., 114, C09017, doi:10.1029/2009JC005362. Ray, R. D., G. D. Egbert, and S. Y. Erofeeva ( 2011 ), Tide predictions in shelf and coastal waters: Status and prospects, in Coastal Altimetry, edited by S. Vignudelli et al., pp. 191 – 216, Springer‐Verlag, Berlin, Germany. Richter, A., L. Mendoza, R. Perdomo, J. Hormaechea, R. Savcenko, W. Bosch, and R. Dietrich ( 2012 ), Pressure tide gauge records from the Atlantic shelf off Tierra del Fuego, southernmost South America, Cont. Shelf Res., 42, 20 – 29. Rosmond, T. E., J. Teixeira, M. Peng, T. F. Hogan, and R. Pauley ( 2002 ), Navy Operational Global Atmospheric Prediction System (NOGAPS): Forcing for ocean models, Oceanography, 15, 99 – 108. Rowlands, D. D., S. B. Luthcke, S. M. Klosko, F. G. R. Lemoine, D. S. Chinn, J. J. McCarthy, C. M. Cox, and O. B. Anderson ( 2005 ), Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements, Geophys. Res. Lett., 32 ( 4 ), L04310, doi:10.1029/2004GL021908. Rudnick, D. L., et al. ( 2003 ), From tides to mixing along the Hawaiian ridge, Science, 301, 355 – 357. Sammari, C., V. G. Koutitonsky, and M. Moussa ( 2006 ), Sea level variability and tidal resonance in the Gulf of Gabes, Tunisia, Cont. Shelf Res., 26, 338 – 350. Savcenko, R., and W. Bosch ( 2012 ), EOT11a—Empirical ocean tide model from multi‐mission satellite altimetry, DGFI Report No. 89, Deutsches Geodätisches Forschungsinstitut, München. Scharroo, R. ( 2008 ), RADS Version 3.1 User Manual and Format Specification, 51 pp., Delft Univ. of Technology, The Netherlands. Schrama, E. J. O., and R. D. Ray ( 1994 ), A preliminary tidal analysis of Topex/Poseidon altimetry, J. Geophys. Res., 99, 24,799 – 24,808. Schwiderski, E. W. ( 1979 ), Global ocean tides: Part II. The semidiurnal principal lunar tide 884 (M 2 ). Atlas of Tidal Charts and Maps, NSWC Tech. Rep. 79‐414, 87 pp., Naval Surface Weapons Center, Dahlgren, Va. Scott, R. B., B. K. Arbic, E. P. Chassignet, A. C. Coward, M. Maltrud, W. J. Merryfield, A. Srinivasan, and A. Varghese ( 2010 ), Total kinetic energy in four global eddying ocean circulation models and over 5000 current meter records, Ocean Modell., 32, 157 – 169, doi:10.1016/j.ocemod.2010.01.005. Seeber, G. ( 2003 ), Satellite Geodesy, 2nd ed., 589 pp., Walter de Gruyter, Berlin, Germany. Shriver, J. F., B. K. Arbic, J. G. Richman, R. D. Ray, E. J. Metzger, A. J. Wallcraft, and P. G. Timko ( 2012 ), An evaluation of the barotropic and internal tides in a high resolution global ocean circulation model, J. Geophys. Res., 117, C10024, doi:10.1029/2012JC008170. Shum, C. K., et al. ( 1997 ), Accuracy assessment of recent ocean tide models, J. Geophys. Res., 102, 25,173 – 25,194. Smith, W. H. F., and D. T. Sandwell ( 1997 ), Global sea floor topography from satellite altimetry and ship depth soundings, Science, 277, 1956 – 1962. Taguchi, E., W. Zahel, and D. Stammer ( 2014 ), Inferring deep ocean tidal energy dissipation from the global high‐resolution data‐assimilative HAMTIDE model, J. Geophys. Res. Oceans, doi:10.1002/2013JC009766. Tapley, B. D., S. Bettadpur, M. Watkins, and C. Reigber ( 2004 ), The gravity recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett., 31, L09607, doi:10.1029/2004GL019920. Teague, W. J., H. T. Perkins, Z. R. Hallock, and G. A. Jacobs ( 1998 ), Current and tide observations in the southern Yellow Sea, J. Geophys. Res., 103, 27,783 – 27,793. Timko, P. G., B. K. Arbic, J. G. Richman, R. B. Scott, E. J. Metzger, and A. J. Wallcraft ( 2012 ), Skill tests of three‐dimensional tidal currents in a global ocean model: A look at the North Atlantic, J. Geophys. Res., 117, C08014, doi:10.1029/2011JC007617. Timko, P. G., B. K. Arbic, J. G. Richman, R. B. Scott, E. J. Metzger, and A. J. Wallcraft ( 2013 ), Skill testing a three‐dimensional global tide model to historical current meter records, J. Geophys. Res. Oceans, 118, 6914 – 6933, doi:10.1002/2013JC009071. von Storch, J.‐S., C. Eden, I. Fast, H. Haak, D. Hernández‐Deckers, E. Maier‐Reimer, J. Marotzke, and D. Stammer ( 2012 ), An estimate of Lorenz energy cycle for the world ocean based on the STORM/NCEP simulation, J. Phys. Oceanogr., 42, 2185 – 2205. Vignudelli, S., A. G. Kostianoy, P. Cipollini, and J. Benveniste ( 2011 ), Coastal Altimetry, Springer‐Verlag, Berlin, Germany. Visser, P. N. A. M., N. Sneeuw, T. Reubelt, M. Losch, and T. van Dam ( 2010 ), Space‐borne gravimetric satellite constellation and ocean tides: Aliasing effects, Geophys. J. Int., 181, 789 – 805. Vlasenko, V., N. Stashchuk, and K. Hutter ( 2005 ), Baroclinic Tides: Theoretical Modeling and Observational Evidence, 351 pp., Cambridge Univ. Press, Cambridge, U. K. Wiese, D. N. ( 2011 ), Optimizing two pairs of GRACE‐like satellites for recovering temporal gravity variations, PhD thesis, Univ. of Colorado, Boulder, Colo. Wiese, D. N., P. Visser, and R. S. Nerem ( 2011 ), Estimating low resolution gravity fields at short time intervals to reduce temporal aliasing errors, Adv. Space Res., 48, 1094 – 1107. Wilhelm, H., W. Zürn, and H.‐G. Wenzel ( 1997 ), Tidal Phenomena, Springer, Berlin, Germany. Williamson, R. G., and J. G. Marsh ( 1985 ), Starlette geodynamics: The Earth's tidal response, J. Geophys. Res., 90, 9346 – 9352. Wunsch, C. ( 1967 ), The long‐period tides, Rev. Geophys., 5, 447 – 476. Wunsch, C. ( 1975 ), Internal tides in the ocean, Rev. Geophys., 13, 167 – 182. Yao, Z., R. He, X. Bao, D. Wu, and J. Song ( 2012 ), M 2 tidal dynamics in the Bohai and Yellow Seas: A hybrid data assimilative modeling study, Ocean Dyn., 62, 753 – 769. Zahel, W. ( 1995 ), Assimilating ocean tide determined data into global tidal models, J. Mar. Syst., 6, 3 – 13. Beardsley, R. C., T. F. Duda, J. F. Lynch, J. D. Irish, R. S. Ramp, C.‐S. Chiu, T. Y. Tang, Y.‐J. Yang, and G. Fang ( 2004 ), Barotropic tide in the northeast South China Sea, IEEE J. Oceanic Eng., 29, 1075 – 1086. Becker, J. J., et al. ( 2009 ), Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS, Mar. Geod., 32 ( 4 ), 355 – 371. Bernard, E. N., C. Meinig, V. V. Titov, K. O'Neil, R. Lawson, K. Jarrott, R. Bailey, F. Nelson, S. Tinti, C. von Hillebrandt, and P. Koltermann ( 2010 ), Tsunami resilient communities, in Proceedings of the OceanObs09: Sustained Ocean Observations and Information for Society Conference, vol. 1, edited by J. Hall, D. E. Harrison, and D. Stammer, p. 4, ESA Publication WPP‐306, Venice, Italy. Accad, Y., and C. L. Pekeris ( 1978 ), Solution of tidal equations for M 2 and S 2 tides in world oceans from a knowledge of tidal potential alone, Philos. Trans. R. Soc., A290, 235 – 266. Andersen, O. B. ( 1995 ), Global ocean tides from ERS‐1 and Topex/Poseidon altimeter, J. Geophys. Res., 100 ( C12 ), 25,249 – 25,259. Andersen, O. B. ( 1999 ), Shallow water tides on the northwest European shelf from Topex/Poseidon altimeter, J. Geophys. Res., 104, 7729 – 7741. |
op_rights | IndexNoFollow |
publishDate | 2014 |
publisher | Wiley Periodicals, Inc. |
record_format | openpolar |
spelling | ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/109292 2025-06-15T14:08:48+00:00 Accuracy assessment of global barotropic ocean tide models Stammer, D. Ray, R.D. Andersen, O.B. Arbic, B.K. Bosch, W. Carrère, L. Cheng, Y. Chinn, D.S. Dushaw, B.D. Egbert, G.D. Erofeeva, S.Y. Fok, H.S. Green, J.A.M. Griffiths, S. King, M.A. Lapin, V. Lemoine, F.G. Luthcke, S.B. Lyard, F. Morison, J. Müller, M. Padman, L. Richman, J.G. Shriver, J.F. Shum, C.K. Taguchi, E. Yi, Y. 2014-09 application/pdf http://hdl.handle.net/2027.42/109292 https://doi.org/10.1002/2014RG000450 unknown Wiley Periodicals, Inc. NOAA Atlas NESDIS 69, U.S. Government Printing Office http://hdl.handle.net/2027.42/109292 doi:10.1002/2014RG000450 Reviews of Geophysics Ray, R. D. ( 2001 ), Inversion of oceanic tidal currents from measured elevations, J. Mar. Syst., 28, 1 – 18. Ponchaut, F., F. Lyard, and C. Le Provost ( 2001 ), An analysis of the tidal signal in the WOCE sea level dataset, J. Atmos. Oceanic Technol., 18, 77 – 91, doi:10.1175/1520‐0426(2001)018<0077:AAOTTS>2.0.CO;2. Pugh, D. T. ( 1987 ), Tides, Surges and Mean Sea‐Level: A Handbook for Scientists and Engineers, 472 pp., John Wiley, Chichester, U. K. Pugh, D. T., and P. L. Woodworth ( 2014 ), Sea‐Level Science: Understanding Tides, Surges Tsunamis and Mean Sea‐Level Changes, 407 pp., Cambridge Univ. Press, Cambridge, U. K. Ray, R. D. ( 1999 ), A global ocean tide model from Topex/Poseidon altimetry: GOT99.2, NASA Tech. Memo. 209478, 58 pp., Goddard Space Flight Center, Greenbelt, MD. Ray, R. D. ( 2008 ), A preliminary tidal analysis of ICESat laser altimetry: Southern Ross Ice Shelf, Geophys. Res. Lett., 35, L02505, doi:10.1029/2007GL032125. Ray, R. D. ( 2013 ), Precise comparisons of bottom‐pressure and altimetric ocean tides, J. Geophys. Res. Oceans, 118, 4570 – 4584, doi:10.1002/jgrc.20336. Ray, R. D., and G. D. Egbert ( 1997 ), The flux of tidal energy across latitude 60°S, Geophys. Res. Lett., 24, 543 – 546. Ray, R. D., S. B. Luthcke, and J.‐P. Boy ( 2009 ), Qualitative comparisons of global ocean tide models by analysis of intersatellite ranging data, J. Geophys. Res., 114, C09017, doi:10.1029/2009JC005362. Ray, R. D., G. D. Egbert, and S. Y. Erofeeva ( 2011 ), Tide predictions in shelf and coastal waters: Status and prospects, in Coastal Altimetry, edited by S. Vignudelli et al., pp. 191 – 216, Springer‐Verlag, Berlin, Germany. Richter, A., L. Mendoza, R. Perdomo, J. Hormaechea, R. Savcenko, W. Bosch, and R. Dietrich ( 2012 ), Pressure tide gauge records from the Atlantic shelf off Tierra del Fuego, southernmost South America, Cont. Shelf Res., 42, 20 – 29. Rosmond, T. E., J. Teixeira, M. Peng, T. F. Hogan, and R. Pauley ( 2002 ), Navy Operational Global Atmospheric Prediction System (NOGAPS): Forcing for ocean models, Oceanography, 15, 99 – 108. Rowlands, D. D., S. B. Luthcke, S. M. Klosko, F. G. R. Lemoine, D. S. Chinn, J. J. McCarthy, C. M. Cox, and O. B. Anderson ( 2005 ), Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements, Geophys. Res. Lett., 32 ( 4 ), L04310, doi:10.1029/2004GL021908. Rudnick, D. L., et al. ( 2003 ), From tides to mixing along the Hawaiian ridge, Science, 301, 355 – 357. Sammari, C., V. G. Koutitonsky, and M. Moussa ( 2006 ), Sea level variability and tidal resonance in the Gulf of Gabes, Tunisia, Cont. Shelf Res., 26, 338 – 350. Savcenko, R., and W. Bosch ( 2012 ), EOT11a—Empirical ocean tide model from multi‐mission satellite altimetry, DGFI Report No. 89, Deutsches Geodätisches Forschungsinstitut, München. Scharroo, R. ( 2008 ), RADS Version 3.1 User Manual and Format Specification, 51 pp., Delft Univ. of Technology, The Netherlands. Schrama, E. J. O., and R. D. Ray ( 1994 ), A preliminary tidal analysis of Topex/Poseidon altimetry, J. Geophys. Res., 99, 24,799 – 24,808. Schwiderski, E. W. ( 1979 ), Global ocean tides: Part II. The semidiurnal principal lunar tide 884 (M 2 ). Atlas of Tidal Charts and Maps, NSWC Tech. Rep. 79‐414, 87 pp., Naval Surface Weapons Center, Dahlgren, Va. Scott, R. B., B. K. Arbic, E. P. Chassignet, A. C. Coward, M. Maltrud, W. J. Merryfield, A. Srinivasan, and A. Varghese ( 2010 ), Total kinetic energy in four global eddying ocean circulation models and over 5000 current meter records, Ocean Modell., 32, 157 – 169, doi:10.1016/j.ocemod.2010.01.005. Seeber, G. ( 2003 ), Satellite Geodesy, 2nd ed., 589 pp., Walter de Gruyter, Berlin, Germany. Shriver, J. F., B. K. Arbic, J. G. Richman, R. D. Ray, E. J. Metzger, A. J. Wallcraft, and P. G. Timko ( 2012 ), An evaluation of the barotropic and internal tides in a high resolution global ocean circulation model, J. Geophys. Res., 117, C10024, doi:10.1029/2012JC008170. Shum, C. K., et al. ( 1997 ), Accuracy assessment of recent ocean tide models, J. Geophys. Res., 102, 25,173 – 25,194. Smith, W. H. F., and D. T. Sandwell ( 1997 ), Global sea floor topography from satellite altimetry and ship depth soundings, Science, 277, 1956 – 1962. Taguchi, E., W. Zahel, and D. Stammer ( 2014 ), Inferring deep ocean tidal energy dissipation from the global high‐resolution data‐assimilative HAMTIDE model, J. Geophys. Res. Oceans, doi:10.1002/2013JC009766. Tapley, B. D., S. Bettadpur, M. Watkins, and C. Reigber ( 2004 ), The gravity recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett., 31, L09607, doi:10.1029/2004GL019920. Teague, W. J., H. T. Perkins, Z. R. Hallock, and G. A. Jacobs ( 1998 ), Current and tide observations in the southern Yellow Sea, J. Geophys. Res., 103, 27,783 – 27,793. Timko, P. G., B. K. Arbic, J. G. Richman, R. B. Scott, E. J. Metzger, and A. J. Wallcraft ( 2012 ), Skill tests of three‐dimensional tidal currents in a global ocean model: A look at the North Atlantic, J. Geophys. Res., 117, C08014, doi:10.1029/2011JC007617. Timko, P. G., B. K. Arbic, J. G. Richman, R. B. Scott, E. J. Metzger, and A. J. Wallcraft ( 2013 ), Skill testing a three‐dimensional global tide model to historical current meter records, J. Geophys. Res. Oceans, 118, 6914 – 6933, doi:10.1002/2013JC009071. von Storch, J.‐S., C. Eden, I. Fast, H. Haak, D. Hernández‐Deckers, E. Maier‐Reimer, J. Marotzke, and D. Stammer ( 2012 ), An estimate of Lorenz energy cycle for the world ocean based on the STORM/NCEP simulation, J. Phys. Oceanogr., 42, 2185 – 2205. Vignudelli, S., A. G. Kostianoy, P. Cipollini, and J. Benveniste ( 2011 ), Coastal Altimetry, Springer‐Verlag, Berlin, Germany. Visser, P. N. A. M., N. Sneeuw, T. Reubelt, M. Losch, and T. van Dam ( 2010 ), Space‐borne gravimetric satellite constellation and ocean tides: Aliasing effects, Geophys. J. Int., 181, 789 – 805. Vlasenko, V., N. Stashchuk, and K. Hutter ( 2005 ), Baroclinic Tides: Theoretical Modeling and Observational Evidence, 351 pp., Cambridge Univ. Press, Cambridge, U. K. Wiese, D. N. ( 2011 ), Optimizing two pairs of GRACE‐like satellites for recovering temporal gravity variations, PhD thesis, Univ. of Colorado, Boulder, Colo. Wiese, D. N., P. Visser, and R. S. Nerem ( 2011 ), Estimating low resolution gravity fields at short time intervals to reduce temporal aliasing errors, Adv. Space Res., 48, 1094 – 1107. Wilhelm, H., W. Zürn, and H.‐G. Wenzel ( 1997 ), Tidal Phenomena, Springer, Berlin, Germany. Williamson, R. G., and J. G. Marsh ( 1985 ), Starlette geodynamics: The Earth's tidal response, J. Geophys. Res., 90, 9346 – 9352. Wunsch, C. ( 1967 ), The long‐period tides, Rev. Geophys., 5, 447 – 476. Wunsch, C. ( 1975 ), Internal tides in the ocean, Rev. Geophys., 13, 167 – 182. Yao, Z., R. He, X. Bao, D. Wu, and J. Song ( 2012 ), M 2 tidal dynamics in the Bohai and Yellow Seas: A hybrid data assimilative modeling study, Ocean Dyn., 62, 753 – 769. Zahel, W. ( 1995 ), Assimilating ocean tide determined data into global tidal models, J. Mar. Syst., 6, 3 – 13. Beardsley, R. C., T. F. Duda, J. F. Lynch, J. D. Irish, R. S. Ramp, C.‐S. Chiu, T. Y. Tang, Y.‐J. Yang, and G. Fang ( 2004 ), Barotropic tide in the northeast South China Sea, IEEE J. Oceanic Eng., 29, 1075 – 1086. Becker, J. J., et al. ( 2009 ), Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS, Mar. Geod., 32 ( 4 ), 355 – 371. Bernard, E. N., C. Meinig, V. V. Titov, K. O'Neil, R. Lawson, K. Jarrott, R. Bailey, F. Nelson, S. Tinti, C. von Hillebrandt, and P. Koltermann ( 2010 ), Tsunami resilient communities, in Proceedings of the OceanObs09: Sustained Ocean Observations and Information for Society Conference, vol. 1, edited by J. Hall, D. E. Harrison, and D. Stammer, p. 4, ESA Publication WPP‐306, Venice, Italy. Accad, Y., and C. L. Pekeris ( 1978 ), Solution of tidal equations for M 2 and S 2 tides in world oceans from a knowledge of tidal potential alone, Philos. Trans. R. Soc., A290, 235 – 266. Andersen, O. B. ( 1995 ), Global ocean tides from ERS‐1 and Topex/Poseidon altimeter, J. Geophys. Res., 100 ( C12 ), 25,249 – 25,259. Andersen, O. B. ( 1999 ), Shallow water tides on the northwest European shelf from Topex/Poseidon altimeter, J. Geophys. Res., 104, 7729 – 7741. IndexNoFollow Geological Sciences Science Article 2014 ftumdeepblue 2025-06-04T05:59:24Z The accuracy of state‐of‐the‐art global barotropic tide models is assessed using bottom pressure data, coastal tide gauges, satellite altimetry, various geodetic data on Antarctic ice shelves, and independent tracked satellite orbit perturbations. Tide models under review include empirical, purely hydrodynamic (“forward”), and assimilative dynamical, i.e., constrained by observations. Ten dominant tidal constituents in the diurnal, semidiurnal, and quarter‐diurnal bands are considered. Since the last major model comparison project in 1997, models have improved markedly, especially in shallow‐water regions and also in the deep ocean. The root‐sum‐square differences between tide observations and the best models for eight major constituents are approximately 0.9, 5.0, and 6.5 cm for pelagic, shelf, and coastal conditions, respectively. Large intermodel discrepancies occur in high latitudes, but testing in those regions is impeded by the paucity of high‐quality in situ tide records. Long‐wavelength components of models tested by analyzing satellite laser ranging measurements suggest that several models are comparably accurate for use in precise orbit determination, but analyses of GRACE intersatellite ranging data show that all models are still imperfect on basin and subbasin scales, especially near Antarctica. For the M 2 constituent, errors in purely hydrodynamic models are now almost comparable to the 1980‐era Schwiderski empirical solution, indicating marked advancement in dynamical modeling. Assessing model accuracy using tidal currents remains problematic owing to uncertainties in in situ current meter estimates and the inability to isolate the barotropic mode. Velocity tests against both acoustic tomography and current meters do confirm that assimilative models perform better than purely hydrodynamic models. Key Points Tide model accuracy assessment Improved accuracies Tidal current estimates Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/109292/1/rog20044.pdf Article in Journal/Newspaper Antarc* Antarctic Antarctica Ice Shelves Unknown Antarctic Reviews of Geophysics 52 3 243 282 |
spellingShingle | Geological Sciences Science Stammer, D. Ray, R.D. Andersen, O.B. Arbic, B.K. Bosch, W. Carrère, L. Cheng, Y. Chinn, D.S. Dushaw, B.D. Egbert, G.D. Erofeeva, S.Y. Fok, H.S. Green, J.A.M. Griffiths, S. King, M.A. Lapin, V. Lemoine, F.G. Luthcke, S.B. Lyard, F. Morison, J. Müller, M. Padman, L. Richman, J.G. Shriver, J.F. Shum, C.K. Taguchi, E. Yi, Y. Accuracy assessment of global barotropic ocean tide models |
title | Accuracy assessment of global barotropic ocean tide models |
title_full | Accuracy assessment of global barotropic ocean tide models |
title_fullStr | Accuracy assessment of global barotropic ocean tide models |
title_full_unstemmed | Accuracy assessment of global barotropic ocean tide models |
title_short | Accuracy assessment of global barotropic ocean tide models |
title_sort | accuracy assessment of global barotropic ocean tide models |
topic | Geological Sciences Science |
topic_facet | Geological Sciences Science |
url | http://hdl.handle.net/2027.42/109292 https://doi.org/10.1002/2014RG000450 |