Surface radiative impacts of ash deposits from the 2009 eruption of Redoubt volcano

The solar broadband albedo change, surface radiative forcing, and snowmelt rate associated with ash deposits based on those from the 2009 eruption of Redoubt volcano were calculated using the field‐corroborated loadings from the Fall3D and the SNow, ICe, and Aerosol Radiation models. The optical pro...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Atmospheres
Main Authors: Young, Cindy L., Sokolik, Irina N., Flanner, Mark G., Dufek, Josef
Format: Article in Journal/Newspaper
Language:unknown
Published: IAHS 2014
Subjects:
Online Access:https://hdl.handle.net/2027.42/109276
https://doi.org/10.1002/2014JD021949
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/109276
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic Arctic
Albedo
Volcanic Ash Deposits
Snowmelt
Mount Redoubt
Radiative Impact
Atmospheric and Oceanic Sciences
Science
spellingShingle Arctic
Albedo
Volcanic Ash Deposits
Snowmelt
Mount Redoubt
Radiative Impact
Atmospheric and Oceanic Sciences
Science
Young, Cindy L.
Sokolik, Irina N.
Flanner, Mark G.
Dufek, Josef
Surface radiative impacts of ash deposits from the 2009 eruption of Redoubt volcano
topic_facet Arctic
Albedo
Volcanic Ash Deposits
Snowmelt
Mount Redoubt
Radiative Impact
Atmospheric and Oceanic Sciences
Science
description The solar broadband albedo change, surface radiative forcing, and snowmelt rate associated with ash deposits based on those from the 2009 eruption of Redoubt volcano were calculated using the field‐corroborated loadings from the Fall3D and the SNow, ICe, and Aerosol Radiation models. The optical properties of ash were calculated from Mie theory, using size information from the Fall3D model. Two sizes of snow grains were used in order to simulate a young and old snowpack. The results show concentrations of aerosol‐sized ash in snow range from ~6.9 × 10 4 to 1 × 10 8 ppb, for the distal edge of the deposits (located ~100–570 km from the vent) to the vent, and integrated solar albedo reductions of ~0–59% for new snow and ~0–85% for old snow. These albedo reductions are much larger than those typical for black carbon and are of the same order of magnitude as those reported for volcanic deposits in Antarctica. The daily mean surface shortwave forcings associated with ash deposits on snow were ~0–96 W m −2 from the most distal deposits to the near‐vent deposits. We show that forcings caused by ash deposits can be greater than those caused by dust deposits. There were no accelerated snowmelts calculated for the edges of the deposits. However, for areas of higher ash concentrations, daily melting rates were conservatively estimated to be ~140–160% higher than those of pure snow. We find that ash deposits from midsized volcanic eruptions can be a major agent of deposit‐induced snowmelt. Key Points The radiative effects due to ash deposition onto Arctic snow are quantified Ash deposits can have greater radiative impacts than dust or black carbon Ash from midsized eruptions can be a major agent of deposit‐induced snowmelt Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/109276/1/supplement.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/109276/2/jgrd51743.pdf
format Article in Journal/Newspaper
author Young, Cindy L.
Sokolik, Irina N.
Flanner, Mark G.
Dufek, Josef
author_facet Young, Cindy L.
Sokolik, Irina N.
Flanner, Mark G.
Dufek, Josef
author_sort Young, Cindy L.
title Surface radiative impacts of ash deposits from the 2009 eruption of Redoubt volcano
title_short Surface radiative impacts of ash deposits from the 2009 eruption of Redoubt volcano
title_full Surface radiative impacts of ash deposits from the 2009 eruption of Redoubt volcano
title_fullStr Surface radiative impacts of ash deposits from the 2009 eruption of Redoubt volcano
title_full_unstemmed Surface radiative impacts of ash deposits from the 2009 eruption of Redoubt volcano
title_sort surface radiative impacts of ash deposits from the 2009 eruption of redoubt volcano
publisher IAHS
publishDate 2014
url https://hdl.handle.net/2027.42/109276
https://doi.org/10.1002/2014JD021949
geographic Arctic
geographic_facet Arctic
genre albedo
Antarc*
Antarctica
Arctic
Arctic
black carbon
genre_facet albedo
Antarc*
Antarctica
Arctic
Arctic
black carbon
op_relation Young, Cindy L.; Sokolik, Irina N.; Flanner, Mark G.; Dufek, Josef (2014). "Surface radiative impacts of ash deposits from the 2009 eruption of Redoubt volcano." Journal of Geophysical Research: Atmospheres 119(19): 11,387-11,397.
2169-897X
2169-8996
https://hdl.handle.net/2027.42/109276
doi:10.1002/2014JD021949
Journal of Geophysical Research: Atmospheres
Smith, A. J. A., and R. G. Grainger ( 2014 ), Does variation in mineral composition alter the short‐wave light scattering properties of desert dust aerosol?, J. Quant. Spectrosc. Radiat. Transfer, 133, 235 – 243, doi:10.1016/j.jqsrt.2013.08.005.
Painter, T. H., J. Dozier, D. A. Roberts, R. E. Davis, and R. O. Green ( 2003 ), Retrieval of subpixel snow‐covered area and grain size from imaging spectrometer data, Remote Sens. Environ., 85 ( 1 ), 64 – 77, doi:10.1016/S0034‐4257(02)00187‐6.
Painter, T. H., A. P. Barrett, C. C. Landry, J. C. Neff, M. P. Cassidy, C. R. Lawrence, K. E. McBride, and G. L. Farmer ( 2007 ), Impact of disturbed desert soils on duration of mountain snow cover, Geophys. Res. Lett., 34, L12502, doi:10.1029/2007GL030284.
Painter, T. H., J. S. Deems, J. Belnap, A. F. Hamlet, C. C. Landry, and B. Udall ( 2010 ), Response of Colorado River runoff to dust radiative forcing in snow, Proc. Natl. Acad. Sci. U.S.A., 107 ( 40 ), 17,125 – 17,130, doi:10.1073/pnas.0913139107.
Pollack, J. B., O. B. Toon, and B. N. Khare ( 1973 ), Optical properties of terrestrial rocks and glasses, Icarus, 19, 372 – 389, doi:10.1016/0019‐1035(73)90115‐2.
Qian, Y., W. I. Gustafson, L. R. Leung, and S. J. Ghan ( 2009 ), Effects of soot‐induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations, J. Geophys. Res., 114, D03108, doi:10.1029/2008JD011039.
Quinn, P. K., et al. ( 2008 ), Short‐lived pollutants in the Arctic: Their climate impact and possible mitigation strategies, Atmos. Chem. Phys., 8, 1723 – 1735, doi:10.5194/acp‐8‐1723‐2008.
Schaefer, J. R. ( 2012 ), The 2009 Eruption of Redoubt Volcano, Alaska, Report of Investigations RI 2011‐5, contributed by K. P. Bull et al., State of Alaska, Dep. of Nat. Resour., Div. of Geol. and Geophys. Surv., Fairbanks, Alaska.
Schaefer, J. R., and K. L. Wallace ( 2012 ), Ash Fall Contour Map of the 2009 Eruption of Redoubt Volcano, Alaska: Digital Shapefiles of Contours and Sample Locations, Miscellaneous Publication MP 143, State of Alaska, Dep. of Nat. Resour., Div. of Geol. and Geophys. Surv., Fairbanks, Alaska.
Shindell, D. ( 2007 ), Local and remote contributions to Arctic warming, Geophys. Res. Lett., 34, L14704, doi:10.1029/2007GL030221.
Simkin, T., and L. Siebert ( 1994 ), Volcanoes of the World, 2nd ed., 368 pp., Geoscience Press, Tucson, Ariz.
Skiles, S. M., T. H. Painter, J. S. Deems, A. C. Bryant, and C. C. Landry ( 2012 ), Dust radiative forcing in snow of the Upper Colorado River Basin: 2. Interannual variability in radiative forcing and snowmelt rates, Water Resour. Res., 48, W07522, doi:10.1029/2012WR011986.
Stone, R. S., G. P. Anderson, E. Andrews, E. G. Dutton, E. P. Shettle, and A. Berk ( 2007 ), Incursions and radiative impact of Asian dust in northern Alaska, Geophys. Res. Lett., 34, L14815, doi:10.1029/2007GL029878.
Stone, R. S., G. P. Anderson, E. P. Shettle, E. Andrews, K. Loukachine, E. G. Dutton, C. Schaaf, and M. O. Roman ( 2008 ), Radiative impact of boreal smoke in the Arctic: Observed and modeled, J. Geophys. Res., 113, D14S16, doi:10.1029/2007JD009657.
Toon, O. B., C. P. McKay, T. P. Ackerman, and K. Santhanam ( 1989 ), Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres, J. Geophys. Res., 94 ( D13 ), 16,287 – 16,301, doi:10.1029/JD094iD13p16287.
Tsvetsinskaya, E. A., C. B. Schaaf, F. Gao, A. H. Strahler, R. E. Dickinson, X. Zeng, and W. Lucht ( 2002 ), Relating MODIS‐derived surface albedo to soils and rock types over Northern Africa and the Arabian peninsula, Geophys. Res. Lett., 29 ( 9 ), 1353, doi:10.1029/2001GL014096.
Wallace, K. L., J. R. Schaefer, and M. L. Coombs ( 2013 ), Character, mass, distribution, and origin of tephra‐fall deposits from the 2009 eruption of Redoubt volcano, Alaska—Highlighting the significance of particle aggregation, J. Volcanol. Geotherm. Res., 259, 145 – 169, doi:10.1016/j.jvolgeores.2012.09.015.
Wang, L., Z. Li, Q. Tian, Y. Ma, F. Zhang, Y. Zhang, D. Li, K. Li, and L. Li ( 2013 ), Estimate of aerosol absorbing components of black carbon, brown carbon, and dust from ground‐based remote sensing data of Sun‐sky radiometers, J. Geophys. Res. Atmos., 118, 6534 – 6543, doi:10.1002/jgrd.50356.
Warren, S. G. ( 1984 ), Impurities in snow: Effects on albedo and snowmelt, Ann. Glaciol., 5, 177 – 179.
Warren, S. G., and W. J. Wiscombe ( 1985 ), Dirty snow after nuclear war, Nature, 313 ( 6002 ), 467 – 470.
Warren, S. G., R. E. Brandt, and T. C. Grenfell ( 2006 ), Visible and near‐ultraviolet absorption spectrum of ice from transmission of solar radiation into snow, Appl. Opt., 45 ( 21 ), 5320 – 5334, doi:10.1364/AO.45.005320.
Young, C. L., I. N. Sokolik, and J. Dufek ( 2012 ), Regional radiative impact of volcanic aerosol from the 2009 eruption of Mt. Redoubt, Atmos. Chem. Phys., 12 ( 8 ), 3699 – 3715, doi:10.5194/acp‐12‐3699‐2012.
Young, C. L., J. Dufek, and I. N. Sokolik ( 2014 ), Assessment of depositional ash loading from the 2009 eruption of Mt. Redoubt, J. Volcanol. Geotherm. Res., 274, 122 – 138, doi:10.1016/j.jvolgeores.2014.02.003.
Zdanowicz, C. M., A. Zielinksi, and C. P. Wake ( 1998 ), Characteristics of modern atmospheric dust deposition in snow on the Penny Ice Cap, Baffin Island, Arctic Canada, Tellus Ser. B, 50, 506 – 520, doi:10.1034/j.1600‐0889.1998.t01‐1‐00008.x.
Clarke, A. D., and K. J. Noone ( 1985 ), Soot in the Arctic snowpack: A cause for perturbations in radiative transfer, Atmos. Environ., 19 ( 12 ), 2045 – 2053, doi:10.1016/0004‐6981(85)90113‐1.
Conway, H., A. Gades, and C. F. Raymond ( 1996 ), Albedo of dirty snow during conditions of melt, Water Resour. Res., 32 ( 6 ), 1713 – 1718, doi:10.1029/96WR00712.
Costa, A., G. Macedonio, and A. Folch ( 2006 ), A three‐dimensional Eulerian model for transport and deposition of volcanic ashes, Earth Planet. Sci. Lett., 241 ( 3–4 ), 634 – 647, doi:10.1016/j.epsl.2005.11.019.
Curry, J. A., W. B. Rossow, D. Randall, and J. L. Schramm ( 1996 ), Overview of Arctic cloud and radiation characteristics, J. Clim., 9 ( 8 ), 1731 – 1764, doi:10.1175/1520‐0442(1996)009<1731:OOACAR>2.0.CO;2.
Dadic, R., P. C. Mullen, M. Schneebeli, R. E. Brandt, and S. G. Warren ( 2013 ), Effects of bubbles, cracks, and volcanic tephra on the spectral albedo of bare ice near the Transantarctic Mountains: Implications for sea glaciers on snowball Earth, J. Geophys. Res. Earth Surf., 118, 1658 – 1676, doi:10.1002/jgrf.20098.
Driedger, C. ( 1981 ), Effect of ash thickness on snow ablation, in The 1980 Eruptions of Mount St. Helens, Washington, edited by P. W. Lipman and R. L. Christiansen, U.S. Geol. Surv. Prof. Pap., 1250, 757 – 760.
Flanner, M. G., and C. S. Zender ( 2005 ), Snowpack radiative heating: Influence on Tibetan Plateau climate, Geophys. Res. Lett., 32, L06501, doi:10.1029/2004GL022076.
Flanner, M. G., and C. S. Zender ( 2006 ), Linking snowpack microphysics and albedo evolution, J. Geophys. Res., 111, D12208, doi:10.1029/2005JD006834.
Flanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch ( 2007 ), Present‐day climate forcing and response from black carbon in snow, J. Geophys. Res., 112, D11202, doi:10.1029/2006JD008003.
Flanner, M. G., A. S. Gardner, S. Eckhardt, A. Stohl, and J. Perket ( 2014 ), Aerosol radiative forcing from the 2010 Eyjafjallajökull volcanic eruptions, J. Geophys. Res. Atmos., 119, 9481 – 9491, doi:10.1002/2014JD021977.
Folch, A., A. Costa, and G. Macedonio ( 2009 ), FALL3D: A computational model for transport and deposition of volcanic ash, Comput. Geosci., 35 ( 6 ), 1334 – 1342, doi:10.1016/j.cageo.2008.08.008.
Fu, Q., T. J. Thorsen, J. Su, J. M. Ge, and J. P. Huang ( 2009 ), Test of Mie‐based single‐scattering properties of non‐spherical dust aerosols in radiative flux calculations, J. Quant. Spectros. Radiat. Transfer, 110 ( 14 ), 1640 – 1653, doi:10.1016/j.jqsrt.2009.03.010.
Knap, W. H., C. H. Reijmer, and J. Oerlemans ( 1999 ), Narrowband to broadband conversion of Landsat TM glacier albedos, Int. J. Remote Sens., 20 ( 10 ), 2091 – 2110.
Kustas, W. P., A. Rango, and R. Uijlenhoet ( 1994 ), A simple energy budget algorithm for the snowmelt runoff model, Water Resour. Res., 30 ( 5 ), 1515 – 1527, doi:10.1029/94WR00152.
Langen, P. L., and V. A. Alexeev ( 2007 ), Polar amplification as a preferred response in an idealized aquaplanet GCM, Clim. Dyn., 29 ( 2–3 ), 305 – 317, doi:10.1007/s00382‐006‐0221‐x.
Martinec, J. ( 1989 ), Hour‐to‐hour snowmelt rates and lysimeter outflow during an entire ablation period, in Proceedings of the Baltimore Symposium: Snow Cover and Glacier Variations, Baltimore, Maryland, Publ. 183, pp. 19 – 28, IAHS, Wallingford, U. K.
Mastin, L. G., H. Schwaiger, D. J. Schneider, K. L. Wallace, J. Schaefer, and R. P. Denlinger ( 2013 ), Injection, transport, and deposition of tephra during event 5 at Redoubt volcano, 23 March, 2009, J. Volcanol. Geotherm. Res., 259, 201 – 213, doi:10.1016/j.jvolgeores.2012.04.025.
McConnell, J. R., R. Edwards, G. L. Kok, M. G. Flanner, C. S. Zender, E. S. Saltzman, J. R. Banta, D. R. Pasteris, M. M. Carter, and J. D. W. Kahl ( 2007 ), 20th‐century industrial black carbon emissions altered arctic climate forcing, Science, 317 ( 5843 ), 1381 – 1384, doi:10.1126/science.1144856.
Melloh, R. A. ( 1999 ), A Synopsis and Comparison of Selected Snowmelt Algorithms, CRREL‐99‐8, Cold Reg. Res. and Eng. Lab., Hanover, N. H.
op_rights IndexNoFollow
op_doi https://doi.org/10.1002/2014JD02194910.1016/S0034‐4257(02)00187‐610.1029/2007GL03028410.1073/pnas.091313910710.1016/0019‐1035(73)90115‐210.1029/2008JD01103910.5194/acp‐8‐1723‐200810.1029/2007GL03022110.1029/2012WR01198610.1029/2007GL02987810.1029/2007JD00
container_title Journal of Geophysical Research: Atmospheres
container_volume 119
container_issue 19
container_start_page 11,387
op_container_end_page 11,397
_version_ 1774724982634446848
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/109276 2023-08-20T03:59:18+02:00 Surface radiative impacts of ash deposits from the 2009 eruption of Redoubt volcano Young, Cindy L. Sokolik, Irina N. Flanner, Mark G. Dufek, Josef 2014-10-16 application/pdf https://hdl.handle.net/2027.42/109276 https://doi.org/10.1002/2014JD021949 unknown IAHS Wiley Periodicals, Inc. Young, Cindy L.; Sokolik, Irina N.; Flanner, Mark G.; Dufek, Josef (2014). "Surface radiative impacts of ash deposits from the 2009 eruption of Redoubt volcano." Journal of Geophysical Research: Atmospheres 119(19): 11,387-11,397. 2169-897X 2169-8996 https://hdl.handle.net/2027.42/109276 doi:10.1002/2014JD021949 Journal of Geophysical Research: Atmospheres Smith, A. J. A., and R. G. Grainger ( 2014 ), Does variation in mineral composition alter the short‐wave light scattering properties of desert dust aerosol?, J. Quant. Spectrosc. Radiat. Transfer, 133, 235 – 243, doi:10.1016/j.jqsrt.2013.08.005. Painter, T. H., J. Dozier, D. A. Roberts, R. E. Davis, and R. O. Green ( 2003 ), Retrieval of subpixel snow‐covered area and grain size from imaging spectrometer data, Remote Sens. Environ., 85 ( 1 ), 64 – 77, doi:10.1016/S0034‐4257(02)00187‐6. Painter, T. H., A. P. Barrett, C. C. Landry, J. C. Neff, M. P. Cassidy, C. R. Lawrence, K. E. McBride, and G. L. Farmer ( 2007 ), Impact of disturbed desert soils on duration of mountain snow cover, Geophys. Res. Lett., 34, L12502, doi:10.1029/2007GL030284. Painter, T. H., J. S. Deems, J. Belnap, A. F. Hamlet, C. C. Landry, and B. Udall ( 2010 ), Response of Colorado River runoff to dust radiative forcing in snow, Proc. Natl. Acad. Sci. U.S.A., 107 ( 40 ), 17,125 – 17,130, doi:10.1073/pnas.0913139107. Pollack, J. B., O. B. Toon, and B. N. Khare ( 1973 ), Optical properties of terrestrial rocks and glasses, Icarus, 19, 372 – 389, doi:10.1016/0019‐1035(73)90115‐2. Qian, Y., W. I. Gustafson, L. R. Leung, and S. J. Ghan ( 2009 ), Effects of soot‐induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations, J. Geophys. Res., 114, D03108, doi:10.1029/2008JD011039. Quinn, P. K., et al. ( 2008 ), Short‐lived pollutants in the Arctic: Their climate impact and possible mitigation strategies, Atmos. Chem. Phys., 8, 1723 – 1735, doi:10.5194/acp‐8‐1723‐2008. Schaefer, J. R. ( 2012 ), The 2009 Eruption of Redoubt Volcano, Alaska, Report of Investigations RI 2011‐5, contributed by K. P. Bull et al., State of Alaska, Dep. of Nat. Resour., Div. of Geol. and Geophys. Surv., Fairbanks, Alaska. Schaefer, J. R., and K. L. Wallace ( 2012 ), Ash Fall Contour Map of the 2009 Eruption of Redoubt Volcano, Alaska: Digital Shapefiles of Contours and Sample Locations, Miscellaneous Publication MP 143, State of Alaska, Dep. of Nat. Resour., Div. of Geol. and Geophys. Surv., Fairbanks, Alaska. Shindell, D. ( 2007 ), Local and remote contributions to Arctic warming, Geophys. Res. Lett., 34, L14704, doi:10.1029/2007GL030221. Simkin, T., and L. Siebert ( 1994 ), Volcanoes of the World, 2nd ed., 368 pp., Geoscience Press, Tucson, Ariz. Skiles, S. M., T. H. Painter, J. S. Deems, A. C. Bryant, and C. C. Landry ( 2012 ), Dust radiative forcing in snow of the Upper Colorado River Basin: 2. Interannual variability in radiative forcing and snowmelt rates, Water Resour. Res., 48, W07522, doi:10.1029/2012WR011986. Stone, R. S., G. P. Anderson, E. Andrews, E. G. Dutton, E. P. Shettle, and A. Berk ( 2007 ), Incursions and radiative impact of Asian dust in northern Alaska, Geophys. Res. Lett., 34, L14815, doi:10.1029/2007GL029878. Stone, R. S., G. P. Anderson, E. P. Shettle, E. Andrews, K. Loukachine, E. G. Dutton, C. Schaaf, and M. O. Roman ( 2008 ), Radiative impact of boreal smoke in the Arctic: Observed and modeled, J. Geophys. Res., 113, D14S16, doi:10.1029/2007JD009657. Toon, O. B., C. P. McKay, T. P. Ackerman, and K. Santhanam ( 1989 ), Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres, J. Geophys. Res., 94 ( D13 ), 16,287 – 16,301, doi:10.1029/JD094iD13p16287. Tsvetsinskaya, E. A., C. B. Schaaf, F. Gao, A. H. Strahler, R. E. Dickinson, X. Zeng, and W. Lucht ( 2002 ), Relating MODIS‐derived surface albedo to soils and rock types over Northern Africa and the Arabian peninsula, Geophys. Res. Lett., 29 ( 9 ), 1353, doi:10.1029/2001GL014096. Wallace, K. L., J. R. Schaefer, and M. L. Coombs ( 2013 ), Character, mass, distribution, and origin of tephra‐fall deposits from the 2009 eruption of Redoubt volcano, Alaska—Highlighting the significance of particle aggregation, J. Volcanol. Geotherm. Res., 259, 145 – 169, doi:10.1016/j.jvolgeores.2012.09.015. Wang, L., Z. Li, Q. Tian, Y. Ma, F. Zhang, Y. Zhang, D. Li, K. Li, and L. Li ( 2013 ), Estimate of aerosol absorbing components of black carbon, brown carbon, and dust from ground‐based remote sensing data of Sun‐sky radiometers, J. Geophys. Res. Atmos., 118, 6534 – 6543, doi:10.1002/jgrd.50356. Warren, S. G. ( 1984 ), Impurities in snow: Effects on albedo and snowmelt, Ann. Glaciol., 5, 177 – 179. Warren, S. G., and W. J. Wiscombe ( 1985 ), Dirty snow after nuclear war, Nature, 313 ( 6002 ), 467 – 470. Warren, S. G., R. E. Brandt, and T. C. Grenfell ( 2006 ), Visible and near‐ultraviolet absorption spectrum of ice from transmission of solar radiation into snow, Appl. Opt., 45 ( 21 ), 5320 – 5334, doi:10.1364/AO.45.005320. Young, C. L., I. N. Sokolik, and J. Dufek ( 2012 ), Regional radiative impact of volcanic aerosol from the 2009 eruption of Mt. Redoubt, Atmos. Chem. Phys., 12 ( 8 ), 3699 – 3715, doi:10.5194/acp‐12‐3699‐2012. Young, C. L., J. Dufek, and I. N. Sokolik ( 2014 ), Assessment of depositional ash loading from the 2009 eruption of Mt. Redoubt, J. Volcanol. Geotherm. Res., 274, 122 – 138, doi:10.1016/j.jvolgeores.2014.02.003. Zdanowicz, C. M., A. Zielinksi, and C. P. Wake ( 1998 ), Characteristics of modern atmospheric dust deposition in snow on the Penny Ice Cap, Baffin Island, Arctic Canada, Tellus Ser. B, 50, 506 – 520, doi:10.1034/j.1600‐0889.1998.t01‐1‐00008.x. Clarke, A. D., and K. J. Noone ( 1985 ), Soot in the Arctic snowpack: A cause for perturbations in radiative transfer, Atmos. Environ., 19 ( 12 ), 2045 – 2053, doi:10.1016/0004‐6981(85)90113‐1. Conway, H., A. Gades, and C. F. Raymond ( 1996 ), Albedo of dirty snow during conditions of melt, Water Resour. Res., 32 ( 6 ), 1713 – 1718, doi:10.1029/96WR00712. Costa, A., G. Macedonio, and A. Folch ( 2006 ), A three‐dimensional Eulerian model for transport and deposition of volcanic ashes, Earth Planet. Sci. Lett., 241 ( 3–4 ), 634 – 647, doi:10.1016/j.epsl.2005.11.019. Curry, J. A., W. B. Rossow, D. Randall, and J. L. Schramm ( 1996 ), Overview of Arctic cloud and radiation characteristics, J. Clim., 9 ( 8 ), 1731 – 1764, doi:10.1175/1520‐0442(1996)009<1731:OOACAR>2.0.CO;2. Dadic, R., P. C. Mullen, M. Schneebeli, R. E. Brandt, and S. G. Warren ( 2013 ), Effects of bubbles, cracks, and volcanic tephra on the spectral albedo of bare ice near the Transantarctic Mountains: Implications for sea glaciers on snowball Earth, J. Geophys. Res. Earth Surf., 118, 1658 – 1676, doi:10.1002/jgrf.20098. Driedger, C. ( 1981 ), Effect of ash thickness on snow ablation, in The 1980 Eruptions of Mount St. Helens, Washington, edited by P. W. Lipman and R. L. Christiansen, U.S. Geol. Surv. Prof. Pap., 1250, 757 – 760. Flanner, M. G., and C. S. Zender ( 2005 ), Snowpack radiative heating: Influence on Tibetan Plateau climate, Geophys. Res. Lett., 32, L06501, doi:10.1029/2004GL022076. Flanner, M. G., and C. S. Zender ( 2006 ), Linking snowpack microphysics and albedo evolution, J. Geophys. Res., 111, D12208, doi:10.1029/2005JD006834. Flanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch ( 2007 ), Present‐day climate forcing and response from black carbon in snow, J. Geophys. Res., 112, D11202, doi:10.1029/2006JD008003. Flanner, M. G., A. S. Gardner, S. Eckhardt, A. Stohl, and J. Perket ( 2014 ), Aerosol radiative forcing from the 2010 Eyjafjallajökull volcanic eruptions, J. Geophys. Res. Atmos., 119, 9481 – 9491, doi:10.1002/2014JD021977. Folch, A., A. Costa, and G. Macedonio ( 2009 ), FALL3D: A computational model for transport and deposition of volcanic ash, Comput. Geosci., 35 ( 6 ), 1334 – 1342, doi:10.1016/j.cageo.2008.08.008. Fu, Q., T. J. Thorsen, J. Su, J. M. Ge, and J. P. Huang ( 2009 ), Test of Mie‐based single‐scattering properties of non‐spherical dust aerosols in radiative flux calculations, J. Quant. Spectros. Radiat. Transfer, 110 ( 14 ), 1640 – 1653, doi:10.1016/j.jqsrt.2009.03.010. Knap, W. H., C. H. Reijmer, and J. Oerlemans ( 1999 ), Narrowband to broadband conversion of Landsat TM glacier albedos, Int. J. Remote Sens., 20 ( 10 ), 2091 – 2110. Kustas, W. P., A. Rango, and R. Uijlenhoet ( 1994 ), A simple energy budget algorithm for the snowmelt runoff model, Water Resour. Res., 30 ( 5 ), 1515 – 1527, doi:10.1029/94WR00152. Langen, P. L., and V. A. Alexeev ( 2007 ), Polar amplification as a preferred response in an idealized aquaplanet GCM, Clim. Dyn., 29 ( 2–3 ), 305 – 317, doi:10.1007/s00382‐006‐0221‐x. Martinec, J. ( 1989 ), Hour‐to‐hour snowmelt rates and lysimeter outflow during an entire ablation period, in Proceedings of the Baltimore Symposium: Snow Cover and Glacier Variations, Baltimore, Maryland, Publ. 183, pp. 19 – 28, IAHS, Wallingford, U. K. Mastin, L. G., H. Schwaiger, D. J. Schneider, K. L. Wallace, J. Schaefer, and R. P. Denlinger ( 2013 ), Injection, transport, and deposition of tephra during event 5 at Redoubt volcano, 23 March, 2009, J. Volcanol. Geotherm. Res., 259, 201 – 213, doi:10.1016/j.jvolgeores.2012.04.025. McConnell, J. R., R. Edwards, G. L. Kok, M. G. Flanner, C. S. Zender, E. S. Saltzman, J. R. Banta, D. R. Pasteris, M. M. Carter, and J. D. W. Kahl ( 2007 ), 20th‐century industrial black carbon emissions altered arctic climate forcing, Science, 317 ( 5843 ), 1381 – 1384, doi:10.1126/science.1144856. Melloh, R. A. ( 1999 ), A Synopsis and Comparison of Selected Snowmelt Algorithms, CRREL‐99‐8, Cold Reg. Res. and Eng. Lab., Hanover, N. H. IndexNoFollow Arctic Albedo Volcanic Ash Deposits Snowmelt Mount Redoubt Radiative Impact Atmospheric and Oceanic Sciences Science Article 2014 ftumdeepblue https://doi.org/10.1002/2014JD02194910.1016/S0034‐4257(02)00187‐610.1029/2007GL03028410.1073/pnas.091313910710.1016/0019‐1035(73)90115‐210.1029/2008JD01103910.5194/acp‐8‐1723‐200810.1029/2007GL03022110.1029/2012WR01198610.1029/2007GL02987810.1029/2007JD00 2023-07-31T21:02:26Z The solar broadband albedo change, surface radiative forcing, and snowmelt rate associated with ash deposits based on those from the 2009 eruption of Redoubt volcano were calculated using the field‐corroborated loadings from the Fall3D and the SNow, ICe, and Aerosol Radiation models. The optical properties of ash were calculated from Mie theory, using size information from the Fall3D model. Two sizes of snow grains were used in order to simulate a young and old snowpack. The results show concentrations of aerosol‐sized ash in snow range from ~6.9 × 10 4 to 1 × 10 8 ppb, for the distal edge of the deposits (located ~100–570 km from the vent) to the vent, and integrated solar albedo reductions of ~0–59% for new snow and ~0–85% for old snow. These albedo reductions are much larger than those typical for black carbon and are of the same order of magnitude as those reported for volcanic deposits in Antarctica. The daily mean surface shortwave forcings associated with ash deposits on snow were ~0–96 W m −2 from the most distal deposits to the near‐vent deposits. We show that forcings caused by ash deposits can be greater than those caused by dust deposits. There were no accelerated snowmelts calculated for the edges of the deposits. However, for areas of higher ash concentrations, daily melting rates were conservatively estimated to be ~140–160% higher than those of pure snow. We find that ash deposits from midsized volcanic eruptions can be a major agent of deposit‐induced snowmelt. Key Points The radiative effects due to ash deposition onto Arctic snow are quantified Ash deposits can have greater radiative impacts than dust or black carbon Ash from midsized eruptions can be a major agent of deposit‐induced snowmelt Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/109276/1/supplement.pdf http://deepblue.lib.umich.edu/bitstream/2027.42/109276/2/jgrd51743.pdf Article in Journal/Newspaper albedo Antarc* Antarctica Arctic Arctic black carbon University of Michigan: Deep Blue Arctic Journal of Geophysical Research: Atmospheres 119 19 11,387 11,397