Contrasting geochemical signatures on land from the Middle and Late Permian extinction events

The end of the Palaeozoic is marked by two mass‐extinction events during the Middle Permian (Capitanian) and the Late Permian (Changhsingian). Given similarities between the two events in geochemical signatures, such as large magnitude negative δ 13 C anomalies, sedimentological signatures such as c...

Full description

Bibliographic Details
Published in:Sedimentology
Main Authors: Sheldon, Nathan D., Chakrabarti, Ramananda, Retallack, Gregory J., Smith, Roger M. H.
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley Periodicals, Inc. 2014
Subjects:
Online Access:https://hdl.handle.net/2027.42/108696
https://doi.org/10.1111/sed.12117
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/108696
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic Greenhouse Climate
Mass Extinctions
Palaeoclimate
Palaeosols
Palaeozoic
Antarctica
Weathering
Geology and Earth Sciences
Science
spellingShingle Greenhouse Climate
Mass Extinctions
Palaeoclimate
Palaeosols
Palaeozoic
Antarctica
Weathering
Geology and Earth Sciences
Science
Sheldon, Nathan D.
Chakrabarti, Ramananda
Retallack, Gregory J.
Smith, Roger M. H.
Contrasting geochemical signatures on land from the Middle and Late Permian extinction events
topic_facet Greenhouse Climate
Mass Extinctions
Palaeoclimate
Palaeosols
Palaeozoic
Antarctica
Weathering
Geology and Earth Sciences
Science
description The end of the Palaeozoic is marked by two mass‐extinction events during the Middle Permian (Capitanian) and the Late Permian (Changhsingian). Given similarities between the two events in geochemical signatures, such as large magnitude negative δ 13 C anomalies, sedimentological signatures such as claystone breccias, and the approximate contemporaneous emplacement of large igneous provinces, many authors have sought a common causal mechanism. Here, a new high‐resolution continental record of the Capitanian event from Portal Mountain, Antarctica, is compared with previously published Changhsingian records of geochemical signatures of weathering intensity and palaeoclimatic change. Geochemical means of discriminating sedimentary provenance (Ti/Al, U/Th and La/Ce ratios) all indicate a common provenance for the Portal Mountain sediments and associated palaeosols, so changes spanning the Capitanian extinction represent changes in weathering intensity rather than sediment source. Proxies for weathering intensity chemical index of alteration, ∆ W and rare earth element accumulation all decline across the Capitanian extinction event at Portal Mountain, which is in contrast to the increased weathering recorded globally at the Late Permian extinction. Furthermore, palaeoclimatic proxies are consistent with unchanging or cooler climatic conditions throughout the Capitanian event, which contrasts with Changhsingian records that all indicate a significant syn‐extinction and post‐extinction series of greenhouse warming events. Although both the Capitanian and Changhsingian event records indicate significant redox shifts, palaeosol geochemistry of the Changhsingian event indicates more reducing conditions, whereas the new Capitanian record of reduced trace metal abundances (Cr, Cu, Ni and Ce) indicates more oxidizing conditions. Taken together, the differences in weathering intensity, redox and the lack of evidence for significant climatic change in the new record suggest that the Capitanian mass extinction was not triggered ...
format Article in Journal/Newspaper
author Sheldon, Nathan D.
Chakrabarti, Ramananda
Retallack, Gregory J.
Smith, Roger M. H.
author_facet Sheldon, Nathan D.
Chakrabarti, Ramananda
Retallack, Gregory J.
Smith, Roger M. H.
author_sort Sheldon, Nathan D.
title Contrasting geochemical signatures on land from the Middle and Late Permian extinction events
title_short Contrasting geochemical signatures on land from the Middle and Late Permian extinction events
title_full Contrasting geochemical signatures on land from the Middle and Late Permian extinction events
title_fullStr Contrasting geochemical signatures on land from the Middle and Late Permian extinction events
title_full_unstemmed Contrasting geochemical signatures on land from the Middle and Late Permian extinction events
title_sort contrasting geochemical signatures on land from the middle and late permian extinction events
publisher Wiley Periodicals, Inc.
publishDate 2014
url https://hdl.handle.net/2027.42/108696
https://doi.org/10.1111/sed.12117
long_lat ENVELOPE(159.167,159.167,-78.100,-78.100)
ENVELOPE(159.167,159.167,-78.100,-78.100)
geographic Portal Mountain
The Portal
geographic_facet Portal Mountain
The Portal
genre Antarc*
Antarctica
genre_facet Antarc*
Antarctica
op_relation Sheldon, Nathan D.; Chakrabarti, Ramananda; Retallack, Gregory J.; Smith, Roger M. H. (2014). "Contrasting geochemical signatures on land from the Middle and Late Permian extinction events." Sedimentology 61(6): 1812-1829.
0037-0746
1365-3091
https://hdl.handle.net/2027.42/108696
doi:10.1111/sed.12117
Sedimentology
Sheldon, N.D. ( 2005 ) Do red beds indicate paleoclimatic conditions?: a Permian case study. Palaeogeogr. Palaeoclimatol. Palaeoecol., 228, 305 – 319.
Sheldon, N.D. and Retallack, G.J. ( 2002 ) Low oxygen levels in earliest Triassic soils. Geology, 30, 919 – 922.
Sheldon, N.D. and Tabor, N.J. ( 2009 ) Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth Sci. Rev., 95, 1 – 52.
Sheldon, N.D., Retallack, G.J. and Tanaka, S. ( 2002 ) Geochemical climofunctions from North American soils and applications to paleosols across the Eocene‐Oligocene boundary in Oregon. J. Geol., 110, 687 – 696.
Sheldon, N.D., Costa, E., Cabrera, L. and Garcés, M. ( 2012 ) Continental climatic and weathering response to the Eocene‐Oligocene transition. J. Geol., 120, 227 – 236.
Shen, S.‐Z., Crowley, J.L., Wang, Y., Bowring, S.A., Erwin, D.H., Sadler, P.M., Cao, C.‐Q., Rothman, D.H., Henderson, C.M., Ramezani, J., Zhang, H., Shen, Y., Wang, X.‐D., Wang, W., Mu, L., Li, W.‐Z., Tang, Y.‐G., Liu, X.‐L., Liu, L.‐J., Zeng, Y., Jiang, Y.‐F. and Jin, Y.‐G. ( 2011 ) Calibrating the end‐Permian mass extinction. Sciencexpress, 334, 1367 – 1372.
Stanley, S.M. and Yang, X. ( 1994 ) A double mass extinction at the end of the Paleozoic era. Science, 266, 1340 – 1344.
Stevens, L.G., Hilton, J., Bond, D.P.G., Glasspool, I.J. and Jardine, P.E. ( 2011 ) Radiation and extinction patterns in Permian floras from North China as indicators for environmental and climate change. J. Geol. Soc. London, 168, 607 – 619.
Tabor, N.J., Smith, R.M.H., Steyer, J.S., Sidor, C.A. and Poulsen, C.J. ( 2011 ) The Permian Moradi Formation of northern Niger: paleosol morphology, petrography and mineralogy. Palaeogeogr. Palaeoclimatol. Palaeoecol., 299, 200 – 213.
Takeuchi, A., Larson, P.B. and Suzuki, K. ( 2007 ) Influence of paleorelief on the Mid‐Miocene climatic variation in southeastern Washington, northeastern Oregon, and western Idaho, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol., 254, 462 – 476.
Thomas, S.G., Tabor, N.J., Yang, W., Myers, T.S., Yang, Y. and Wang, D. ( 2011 ) Palaeosol stratigraphy across the Permian‐Triassic boundary, Bogda Mountains, NW China: implications for palaeoenvironmental transition through Earth's largest mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol., 308, 41 – 64.
Tyler, G. ( 2004 ) Rare earth elements in soil and plant systems – a review. Plant Soil, 267, 191 – 206.
Wang, W., Cao, C.‐Q. and Wang, Y. ( 2004 ) The carbon isotope excursion on GSSP candidate section of Lopingian‐Guadalupian boundary. Earth Planet. Sci. Lett., 220, 57 – 67.
Ward, P.D., Montgomery, D.R. and Smith, R. ( 2000 ) Altered river morphology in South Africa related to the Permian‐Triassic extinction. Science, 289, 740 – 743.
Ward, P.D., Botha, J., Buick, R., de Kock, M.O., Erwin, D.H., Garrison, G., Kirschvink, J. and Smith, R. ( 2005 ) Abrupt and gradual extinction among Late Permian vertebrates in the Karoo Basin, South Africa. Science, 307, 709 – 714.
Weidlich, O. ( 2002 ) Permian reefs re‐examined: extrinsic control mechanisms of gradual and abrupt changes during 40 my of reef evolution. Geobios Mém. Spéc., 24, 287 – 294.
van der Weijden, C.H. and van der Weijden, R.D. ( 1995 ) Mobility of major, minor and some redox‐sensitive trace elements and rare‐earth elements during weathering of four granitoids in central Portugal. Chem. Geol., 125, 149 – 167.
Wignall, P.B., Sun, Y.‐D., Bond, D.P.G., Izon, G., Newton, R.J., Vedrine, S., Widdowson, M., Ali, J.R., Lai, X.‐L., Jiang, H.‐S., Cope, H. and Bottrell, S.H. ( 2009 ) Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China. Science, 324, 1179 – 1182.
Wignall, P.B., Bond, D.P.G., Kuwahara, K., Kakuwa, Y., Newton, R.G. and Poulton, S.W. ( 2010 ) An 80 million year oceanic redox history from Permian to Jurassic pelagic sediments of the Mino‐Tamba terrane, SW Japan, and the original of four mass extinctions. Global Planet. Change, 71, 109 – 123.
Wignall, P.B., Bond, D.P.G., Haas, J., Wang, W., Jiang, H., Lai, X., Altiner, D., Védrine, S., Hips, K., Zajzon, N., Sun, Y. and Newton, R.J. ( 2012 ) Capitanian (Middle Permian) mass extinction and recovery in western Tethys: a fossil, facies, and δ 13 C study from Hungary and Hydra Island (Greece). Palaios, 27, 78 – 89.
Wimpenny, J., Gannoun, A., Burton, K.W., Widdowson, M., James, R.H. and Gíslason, S.R. ( 2007 ) Rhenium and osmium isotope and elemental behavior accompanying laterite formation in the Deccan region of India. Earth Planet. Sci. Lett., 261, 239 – 258.
de Wit, M.J., Ghosh, J.G., de Villiers, S., Rakotosolofo, N., Alexander, J., Tripathi, A. and Looy, C. ( 2002 ) Multiple organic carbon isotope reversals across the Permo‐Triassic boundary of terrestrial Gondwanan sequences: clues to extinction patterns and delayed ecosystem recovery. J. Geol., 110, 227 – 240.
Yang, W., Feng, Q., Liu, Y., Tabor, N., Miggins, D., Crowley, J.L., Lin, J. and Thomas, S. ( 2010 ) Depositional environments and cyclo‐ and chronostratigraphy of uppermost Carboniferous‐Lower Triassic fluvial‐lacustrine deposits, southern Bogda Mountains, NW China – a terrestrial paleoclimate record of mid‐latitude NE Pangea. Global Planet. Change, 73, 15 – 113.
Zhang, G.‐L., Pan, J.‐H., Huang, C.‐M. and Gong, Z.‐T. ( 2007 ) Geochemical features of a soil chronosequence developed on basalt in Hainan Island, China. Rev. Mex. de Ciecias Geol., 24, 261 – 269.
Zhou, M.‐F., Malpas, J., Song, X.‐Y., Robinson, P.T., Sun, M., Kennedy, A.K., Lesher, C.M. and Keays, R.R. ( 2002 ) A temporal link between the Emeishan large igneous province (SW China) and the end‐Guadalupian mass extinction. Earth Planet. Sci. Lett., 196, 113 – 122.
Retallack, G.J. ( 2008 ) Cambrian paleosols and landscapes of South Australia. Aust. J. Earth Sci., 55, 1083 – 1106.
Algeo, T.J. and Twitchett, R.J. ( 2010 ) Anomalous Early Triassic sediment fluxes due to elevated weathering rtes and their biological consequences. Geology, 38, 1023 – 1026.
Algeo, T.J., Chen, Z.Q., Fraiser, M.L. and Twitchett, R.J. ( 2011a ) Terrestrial‐marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeogr. Palaeoclimatol. Palaeoecol., 308, 1 – 11.
Jin, Y.‐G., Wang, Y., Wang, W., Sheng, Q., Cao, C.‐Q. and Erwin, D.H. ( 2000 ) Pattern of marine mass extinction across the Permian‐Triassic boundary in south China. Science, 289, 432 – 436.
Algeo, T.J., Kuwahara, K., Sano, H., Bates, S., Lyons, T., Elswick, E., Hinnov, L., Ellwood, B., Moser, J. and Maynard, J.B. ( 2011b ) Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian‐Triassic Panthalassic Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol., 308, 65 – 83. doi:10.1016/j.palaeo.2010.07.007
Askin, R.A. ( 1997 ) Permian palynomorphs for southern Victoria Land, Antarctica. Antarct. J. US, 30, 47 – 48.
Berner, R.A. ( 2002 ) Examination of hypotheses for the Permo‐Triassic boundary extinction by carbon cycle modeling. Proc. Natl Acad. Sci., 99, 4172 – 4177.
Bond, D.P.G. and Wignall, P.B. ( 2009 ) Latitudinal selectivity of foraminifer extinctions during the Late Guadalupian crisis. Paleobiology, 35, 465 – 483.
Bond, D.P.G., Hilton, J., Wignall, P.B., Ali, J.R., Stevens, L.G., Sun., Y. and Lai, X. ( 2010 ) The Middle Permian (Capitanian) mass extinction on land and in the oceans. Earth Sci. Rev., 102, 100 – 116.
Chen, Z.‐Q. and Benton, M.J. ( 2012 ) The timing and pattern of biotic recovery following the end‐Permian mass extinction. Nat. Geosci., 5, 375 – 383.
Clapham, M.E., Shen, S.‐Z. and Bottjer, D.J. ( 2009 ) The double mass extinction revisited: reassessing the severity, selectivity, and causes of the end‐Guadalupian biotic crisis (Late Permian). Paleobiology, 35, 32 – 50.
Collinson, J.W., Isbell, J.L., Elliot, D.H., Miller, M.F., Miller, J.M.G. and Veevers, J.J. ( 1994 ) Permian‐Triassic Transantarctic basin. In: Permian‐Triassic Pangean Basins and Foldbelts Along the Panthalassan Margin of Gondwanaland (Eds J.J. Veevers and C.M. Powell ), Geol. Soc. Am. Mem., 184, 173 – 222.
Compston, W. ( 1960 ) The carbon isotope composition of certain marine invertebrates and coals from the Australian Permian. Geochim. Cosmochim. Acta, 18, 1 – 22.
De la Horra, R., Galan‐Abellan, A.B., Lopez‐Gomez, J., Sheldon, N.D., Barrenechea, J.F., Luque, F.J., Arche, A. and Benito, M.I. ( 2012 ) Paleoecological and paleoenvironmental changes during the continental Middle‐Late Permian transition at the SE Iberian Ranges, Spain. Global Planet. Change, 94–95, 46 – 61.
Driese, S.G., Medaris, G., Jr, Ren, M., Runkel, A.C. and Langford, R.P. ( 2007 ) Differentiating pedogenesis from diagenesis in early terrestrial paleoweathering surfaces formed on granitic composition parent materials. J. Geol., 115, 387 – 406.
Erwin, D.H., Bowring, S.A. and Jin, Y.‐G. ( 2002 ). End‐Permian mass‐extinctions: a review. In: Catastrophic Events and Mass Extinctions: Impacts and Beyond (Eds C. Koeberl and K.G. MacLeod ), Geol. Soc. Am. Spec. Pap., 356, 353 – 383.
Farabee, M.J., Taylor, E.L. and Taylor, T.N. ( 1990 ) Correlation of Permian and Triassic palynomorph assemblages from the central Transantarctic Mountains, Antarctica. Rev. Palaeobot. Palynol., 65, 257 – 265.
Farabee, M.J., Taylor, E.L. and Taylor, T.N. ( 1991 ) Late Permian palynomorphs from the Buckley Formation, central Transantarctic Mountains, Antarctica. Rev. Palaeobot. Palynol., 69, 353 – 368.
Fio, K., Spangenberg, J.E., Vlahović, I., Sremac, J., Velić, I. and Mrinjek, E. ( 2010 ) Stable isotope and trace element stratigraphy across the Permian‐Triassic transition: a redefinition of the boundary in the Velebit Mountain, Crotia. Chem. Geol., 278, 38 – 57.
op_rights IndexNoFollow
op_doi https://doi.org/10.1111/sed.1211710.1016/j.palaeo.2010.07.00710.1016/j.palaeo.2010.09.022
container_title Sedimentology
container_volume 61
container_issue 6
container_start_page 1812
op_container_end_page 1829
_version_ 1774712826793820160
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/108696 2023-08-20T04:02:24+02:00 Contrasting geochemical signatures on land from the Middle and Late Permian extinction events Sheldon, Nathan D. Chakrabarti, Ramananda Retallack, Gregory J. Smith, Roger M. H. 2014-10 application/pdf https://hdl.handle.net/2027.42/108696 https://doi.org/10.1111/sed.12117 unknown Wiley Periodicals, Inc. Sheldon, Nathan D.; Chakrabarti, Ramananda; Retallack, Gregory J.; Smith, Roger M. H. (2014). "Contrasting geochemical signatures on land from the Middle and Late Permian extinction events." Sedimentology 61(6): 1812-1829. 0037-0746 1365-3091 https://hdl.handle.net/2027.42/108696 doi:10.1111/sed.12117 Sedimentology Sheldon, N.D. ( 2005 ) Do red beds indicate paleoclimatic conditions?: a Permian case study. Palaeogeogr. Palaeoclimatol. Palaeoecol., 228, 305 – 319. Sheldon, N.D. and Retallack, G.J. ( 2002 ) Low oxygen levels in earliest Triassic soils. Geology, 30, 919 – 922. Sheldon, N.D. and Tabor, N.J. ( 2009 ) Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth Sci. Rev., 95, 1 – 52. Sheldon, N.D., Retallack, G.J. and Tanaka, S. ( 2002 ) Geochemical climofunctions from North American soils and applications to paleosols across the Eocene‐Oligocene boundary in Oregon. J. Geol., 110, 687 – 696. Sheldon, N.D., Costa, E., Cabrera, L. and Garcés, M. ( 2012 ) Continental climatic and weathering response to the Eocene‐Oligocene transition. J. Geol., 120, 227 – 236. Shen, S.‐Z., Crowley, J.L., Wang, Y., Bowring, S.A., Erwin, D.H., Sadler, P.M., Cao, C.‐Q., Rothman, D.H., Henderson, C.M., Ramezani, J., Zhang, H., Shen, Y., Wang, X.‐D., Wang, W., Mu, L., Li, W.‐Z., Tang, Y.‐G., Liu, X.‐L., Liu, L.‐J., Zeng, Y., Jiang, Y.‐F. and Jin, Y.‐G. ( 2011 ) Calibrating the end‐Permian mass extinction. Sciencexpress, 334, 1367 – 1372. Stanley, S.M. and Yang, X. ( 1994 ) A double mass extinction at the end of the Paleozoic era. Science, 266, 1340 – 1344. Stevens, L.G., Hilton, J., Bond, D.P.G., Glasspool, I.J. and Jardine, P.E. ( 2011 ) Radiation and extinction patterns in Permian floras from North China as indicators for environmental and climate change. J. Geol. Soc. London, 168, 607 – 619. Tabor, N.J., Smith, R.M.H., Steyer, J.S., Sidor, C.A. and Poulsen, C.J. ( 2011 ) The Permian Moradi Formation of northern Niger: paleosol morphology, petrography and mineralogy. Palaeogeogr. Palaeoclimatol. Palaeoecol., 299, 200 – 213. Takeuchi, A., Larson, P.B. and Suzuki, K. ( 2007 ) Influence of paleorelief on the Mid‐Miocene climatic variation in southeastern Washington, northeastern Oregon, and western Idaho, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol., 254, 462 – 476. Thomas, S.G., Tabor, N.J., Yang, W., Myers, T.S., Yang, Y. and Wang, D. ( 2011 ) Palaeosol stratigraphy across the Permian‐Triassic boundary, Bogda Mountains, NW China: implications for palaeoenvironmental transition through Earth's largest mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol., 308, 41 – 64. Tyler, G. ( 2004 ) Rare earth elements in soil and plant systems – a review. Plant Soil, 267, 191 – 206. Wang, W., Cao, C.‐Q. and Wang, Y. ( 2004 ) The carbon isotope excursion on GSSP candidate section of Lopingian‐Guadalupian boundary. Earth Planet. Sci. Lett., 220, 57 – 67. Ward, P.D., Montgomery, D.R. and Smith, R. ( 2000 ) Altered river morphology in South Africa related to the Permian‐Triassic extinction. Science, 289, 740 – 743. Ward, P.D., Botha, J., Buick, R., de Kock, M.O., Erwin, D.H., Garrison, G., Kirschvink, J. and Smith, R. ( 2005 ) Abrupt and gradual extinction among Late Permian vertebrates in the Karoo Basin, South Africa. Science, 307, 709 – 714. Weidlich, O. ( 2002 ) Permian reefs re‐examined: extrinsic control mechanisms of gradual and abrupt changes during 40 my of reef evolution. Geobios Mém. Spéc., 24, 287 – 294. van der Weijden, C.H. and van der Weijden, R.D. ( 1995 ) Mobility of major, minor and some redox‐sensitive trace elements and rare‐earth elements during weathering of four granitoids in central Portugal. Chem. Geol., 125, 149 – 167. Wignall, P.B., Sun, Y.‐D., Bond, D.P.G., Izon, G., Newton, R.J., Vedrine, S., Widdowson, M., Ali, J.R., Lai, X.‐L., Jiang, H.‐S., Cope, H. and Bottrell, S.H. ( 2009 ) Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China. Science, 324, 1179 – 1182. Wignall, P.B., Bond, D.P.G., Kuwahara, K., Kakuwa, Y., Newton, R.G. and Poulton, S.W. ( 2010 ) An 80 million year oceanic redox history from Permian to Jurassic pelagic sediments of the Mino‐Tamba terrane, SW Japan, and the original of four mass extinctions. Global Planet. Change, 71, 109 – 123. Wignall, P.B., Bond, D.P.G., Haas, J., Wang, W., Jiang, H., Lai, X., Altiner, D., Védrine, S., Hips, K., Zajzon, N., Sun, Y. and Newton, R.J. ( 2012 ) Capitanian (Middle Permian) mass extinction and recovery in western Tethys: a fossil, facies, and δ 13 C study from Hungary and Hydra Island (Greece). Palaios, 27, 78 – 89. Wimpenny, J., Gannoun, A., Burton, K.W., Widdowson, M., James, R.H. and Gíslason, S.R. ( 2007 ) Rhenium and osmium isotope and elemental behavior accompanying laterite formation in the Deccan region of India. Earth Planet. Sci. Lett., 261, 239 – 258. de Wit, M.J., Ghosh, J.G., de Villiers, S., Rakotosolofo, N., Alexander, J., Tripathi, A. and Looy, C. ( 2002 ) Multiple organic carbon isotope reversals across the Permo‐Triassic boundary of terrestrial Gondwanan sequences: clues to extinction patterns and delayed ecosystem recovery. J. Geol., 110, 227 – 240. Yang, W., Feng, Q., Liu, Y., Tabor, N., Miggins, D., Crowley, J.L., Lin, J. and Thomas, S. ( 2010 ) Depositional environments and cyclo‐ and chronostratigraphy of uppermost Carboniferous‐Lower Triassic fluvial‐lacustrine deposits, southern Bogda Mountains, NW China – a terrestrial paleoclimate record of mid‐latitude NE Pangea. Global Planet. Change, 73, 15 – 113. Zhang, G.‐L., Pan, J.‐H., Huang, C.‐M. and Gong, Z.‐T. ( 2007 ) Geochemical features of a soil chronosequence developed on basalt in Hainan Island, China. Rev. Mex. de Ciecias Geol., 24, 261 – 269. Zhou, M.‐F., Malpas, J., Song, X.‐Y., Robinson, P.T., Sun, M., Kennedy, A.K., Lesher, C.M. and Keays, R.R. ( 2002 ) A temporal link between the Emeishan large igneous province (SW China) and the end‐Guadalupian mass extinction. Earth Planet. Sci. Lett., 196, 113 – 122. Retallack, G.J. ( 2008 ) Cambrian paleosols and landscapes of South Australia. Aust. J. Earth Sci., 55, 1083 – 1106. Algeo, T.J. and Twitchett, R.J. ( 2010 ) Anomalous Early Triassic sediment fluxes due to elevated weathering rtes and their biological consequences. Geology, 38, 1023 – 1026. Algeo, T.J., Chen, Z.Q., Fraiser, M.L. and Twitchett, R.J. ( 2011a ) Terrestrial‐marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeogr. Palaeoclimatol. Palaeoecol., 308, 1 – 11. Jin, Y.‐G., Wang, Y., Wang, W., Sheng, Q., Cao, C.‐Q. and Erwin, D.H. ( 2000 ) Pattern of marine mass extinction across the Permian‐Triassic boundary in south China. Science, 289, 432 – 436. Algeo, T.J., Kuwahara, K., Sano, H., Bates, S., Lyons, T., Elswick, E., Hinnov, L., Ellwood, B., Moser, J. and Maynard, J.B. ( 2011b ) Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian‐Triassic Panthalassic Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol., 308, 65 – 83. doi:10.1016/j.palaeo.2010.07.007 Askin, R.A. ( 1997 ) Permian palynomorphs for southern Victoria Land, Antarctica. Antarct. J. US, 30, 47 – 48. Berner, R.A. ( 2002 ) Examination of hypotheses for the Permo‐Triassic boundary extinction by carbon cycle modeling. Proc. Natl Acad. Sci., 99, 4172 – 4177. Bond, D.P.G. and Wignall, P.B. ( 2009 ) Latitudinal selectivity of foraminifer extinctions during the Late Guadalupian crisis. Paleobiology, 35, 465 – 483. Bond, D.P.G., Hilton, J., Wignall, P.B., Ali, J.R., Stevens, L.G., Sun., Y. and Lai, X. ( 2010 ) The Middle Permian (Capitanian) mass extinction on land and in the oceans. Earth Sci. Rev., 102, 100 – 116. Chen, Z.‐Q. and Benton, M.J. ( 2012 ) The timing and pattern of biotic recovery following the end‐Permian mass extinction. Nat. Geosci., 5, 375 – 383. Clapham, M.E., Shen, S.‐Z. and Bottjer, D.J. ( 2009 ) The double mass extinction revisited: reassessing the severity, selectivity, and causes of the end‐Guadalupian biotic crisis (Late Permian). Paleobiology, 35, 32 – 50. Collinson, J.W., Isbell, J.L., Elliot, D.H., Miller, M.F., Miller, J.M.G. and Veevers, J.J. ( 1994 ) Permian‐Triassic Transantarctic basin. In: Permian‐Triassic Pangean Basins and Foldbelts Along the Panthalassan Margin of Gondwanaland (Eds J.J. Veevers and C.M. Powell ), Geol. Soc. Am. Mem., 184, 173 – 222. Compston, W. ( 1960 ) The carbon isotope composition of certain marine invertebrates and coals from the Australian Permian. Geochim. Cosmochim. Acta, 18, 1 – 22. De la Horra, R., Galan‐Abellan, A.B., Lopez‐Gomez, J., Sheldon, N.D., Barrenechea, J.F., Luque, F.J., Arche, A. and Benito, M.I. ( 2012 ) Paleoecological and paleoenvironmental changes during the continental Middle‐Late Permian transition at the SE Iberian Ranges, Spain. Global Planet. Change, 94–95, 46 – 61. Driese, S.G., Medaris, G., Jr, Ren, M., Runkel, A.C. and Langford, R.P. ( 2007 ) Differentiating pedogenesis from diagenesis in early terrestrial paleoweathering surfaces formed on granitic composition parent materials. J. Geol., 115, 387 – 406. Erwin, D.H., Bowring, S.A. and Jin, Y.‐G. ( 2002 ). End‐Permian mass‐extinctions: a review. In: Catastrophic Events and Mass Extinctions: Impacts and Beyond (Eds C. Koeberl and K.G. MacLeod ), Geol. Soc. Am. Spec. Pap., 356, 353 – 383. Farabee, M.J., Taylor, E.L. and Taylor, T.N. ( 1990 ) Correlation of Permian and Triassic palynomorph assemblages from the central Transantarctic Mountains, Antarctica. Rev. Palaeobot. Palynol., 65, 257 – 265. Farabee, M.J., Taylor, E.L. and Taylor, T.N. ( 1991 ) Late Permian palynomorphs from the Buckley Formation, central Transantarctic Mountains, Antarctica. Rev. Palaeobot. Palynol., 69, 353 – 368. Fio, K., Spangenberg, J.E., Vlahović, I., Sremac, J., Velić, I. and Mrinjek, E. ( 2010 ) Stable isotope and trace element stratigraphy across the Permian‐Triassic transition: a redefinition of the boundary in the Velebit Mountain, Crotia. Chem. Geol., 278, 38 – 57. IndexNoFollow Greenhouse Climate Mass Extinctions Palaeoclimate Palaeosols Palaeozoic Antarctica Weathering Geology and Earth Sciences Science Article 2014 ftumdeepblue https://doi.org/10.1111/sed.1211710.1016/j.palaeo.2010.07.00710.1016/j.palaeo.2010.09.022 2023-07-31T20:40:31Z The end of the Palaeozoic is marked by two mass‐extinction events during the Middle Permian (Capitanian) and the Late Permian (Changhsingian). Given similarities between the two events in geochemical signatures, such as large magnitude negative δ 13 C anomalies, sedimentological signatures such as claystone breccias, and the approximate contemporaneous emplacement of large igneous provinces, many authors have sought a common causal mechanism. Here, a new high‐resolution continental record of the Capitanian event from Portal Mountain, Antarctica, is compared with previously published Changhsingian records of geochemical signatures of weathering intensity and palaeoclimatic change. Geochemical means of discriminating sedimentary provenance (Ti/Al, U/Th and La/Ce ratios) all indicate a common provenance for the Portal Mountain sediments and associated palaeosols, so changes spanning the Capitanian extinction represent changes in weathering intensity rather than sediment source. Proxies for weathering intensity chemical index of alteration, ∆ W and rare earth element accumulation all decline across the Capitanian extinction event at Portal Mountain, which is in contrast to the increased weathering recorded globally at the Late Permian extinction. Furthermore, palaeoclimatic proxies are consistent with unchanging or cooler climatic conditions throughout the Capitanian event, which contrasts with Changhsingian records that all indicate a significant syn‐extinction and post‐extinction series of greenhouse warming events. Although both the Capitanian and Changhsingian event records indicate significant redox shifts, palaeosol geochemistry of the Changhsingian event indicates more reducing conditions, whereas the new Capitanian record of reduced trace metal abundances (Cr, Cu, Ni and Ce) indicates more oxidizing conditions. Taken together, the differences in weathering intensity, redox and the lack of evidence for significant climatic change in the new record suggest that the Capitanian mass extinction was not triggered ... Article in Journal/Newspaper Antarc* Antarctica University of Michigan: Deep Blue Portal Mountain ENVELOPE(159.167,159.167,-78.100,-78.100) The Portal ENVELOPE(159.167,159.167,-78.100,-78.100) Sedimentology 61 6 1812 1829