A coupled geochemical and biogeochemical approach to characterize the bioreactivity of dissolved organic matter from a headwater stream

The bioreactivity or susceptibility of dissolved organic matter (DOM) to microbial degradation in streams and rivers is of critical importance to global change studies, but a comprehensive understanding of DOM bioreactivity has been elusive due, in part, to the stunningly diverse assemblages of orga...

Full description

Bibliographic Details
Published in:Izvestiya Rossiiskoi Akademii Nauk Seriya Geograficheskaya
Main Authors: Sleighter, Rachel L., Cory, Rose M., Kaplan, Louis A., Abdulla, Hussain A. N., Hatcher, Patrick G.
Format: Article in Journal/Newspaper
Language:unknown
Published: Academic Press 2014
Subjects:
Online Access:http://hdl.handle.net/2027.42/108612
https://doi.org/10.1002/2013JG002600
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/108612
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic Dissolved Organic Matter
Bioreactivity
FTICR‐MS
EEMs
Microbial Degradation
Geological Sciences
Science
spellingShingle Dissolved Organic Matter
Bioreactivity
FTICR‐MS
EEMs
Microbial Degradation
Geological Sciences
Science
Sleighter, Rachel L.
Cory, Rose M.
Kaplan, Louis A.
Abdulla, Hussain A. N.
Hatcher, Patrick G.
A coupled geochemical and biogeochemical approach to characterize the bioreactivity of dissolved organic matter from a headwater stream
topic_facet Dissolved Organic Matter
Bioreactivity
FTICR‐MS
EEMs
Microbial Degradation
Geological Sciences
Science
description The bioreactivity or susceptibility of dissolved organic matter (DOM) to microbial degradation in streams and rivers is of critical importance to global change studies, but a comprehensive understanding of DOM bioreactivity has been elusive due, in part, to the stunningly diverse assemblages of organic molecules within DOM. We approach this problem by employing a range of techniques to characterize DOM as it flows through biofilm reactors: dissolved organic carbon (DOC) concentrations, excitation emission matrix spectroscopy (EEMs), and ultrahigh resolution mass spectrometry. The EEMs and mass spectral data were analyzed using a combination of multivariate statistical approaches. We found that 45% of stream water DOC was biodegraded by microorganisms, including 31–45% of the humic DOC. This bioreactive DOM separated into two different groups: (1) H/C centered at 1.5 with O/C 0.1–0.5 or (2) low H/C of 0.5–1.0 spanning O/C 0.2–0.7 that were positively correlated (Spearman ranking) with chromophoric and fluorescent DOM (CDOM and FDOM, respectively). DOM that was more recalcitrant and resistant to microbial degradation aligned tightly in the center of the van Krevelen space (H/C 1.0–1.5, O/C 0.25–0.6) and negatively correlated (Spearman ranking) with CDOM and FDOM. These findings were supported further by principal component analysis and 2‐D correlation analysis of the relative magnitudes of the mass spectral peaks assigned to molecular formulas. This study demonstrates that our approach of processing stream water through bioreactors followed by EEMs and FTICR‐MS analyses, in combination with multivariate statistical analysis, allows for precise, robust characterization of compound bioreactivity and associated molecular level composition. Key Points Humic DOM is susceptible to microbial degradation along with peptide‐like DOM Labile DOM can be distinguished from recalcitrant DOM in van Krevelen space EEMs and FTICR‐MS chemically characterize bioreactive and recalcitrant DOM Peer Reviewed ...
format Article in Journal/Newspaper
author Sleighter, Rachel L.
Cory, Rose M.
Kaplan, Louis A.
Abdulla, Hussain A. N.
Hatcher, Patrick G.
author_facet Sleighter, Rachel L.
Cory, Rose M.
Kaplan, Louis A.
Abdulla, Hussain A. N.
Hatcher, Patrick G.
author_sort Sleighter, Rachel L.
title A coupled geochemical and biogeochemical approach to characterize the bioreactivity of dissolved organic matter from a headwater stream
title_short A coupled geochemical and biogeochemical approach to characterize the bioreactivity of dissolved organic matter from a headwater stream
title_full A coupled geochemical and biogeochemical approach to characterize the bioreactivity of dissolved organic matter from a headwater stream
title_fullStr A coupled geochemical and biogeochemical approach to characterize the bioreactivity of dissolved organic matter from a headwater stream
title_full_unstemmed A coupled geochemical and biogeochemical approach to characterize the bioreactivity of dissolved organic matter from a headwater stream
title_sort coupled geochemical and biogeochemical approach to characterize the bioreactivity of dissolved organic matter from a headwater stream
publisher Academic Press
publishDate 2014
url http://hdl.handle.net/2027.42/108612
https://doi.org/10.1002/2013JG002600
genre Arctic
genre_facet Arctic
op_relation Sleighter, Rachel L.; Cory, Rose M.; Kaplan, Louis A.; Abdulla, Hussain A. N.; Hatcher, Patrick G. (2014). "A coupled geochemical and biogeochemical approach to characterize the bioreactivity of dissolved organic matter from a headwater stream." Journal of Geophysical Research: Biogeosciences 119(8): 1520-1537.
2169-8953
2169-8961
http://hdl.handle.net/2027.42/108612
doi:10.1002/2013JG002600
Journal of Geophysical Research: Biogeosciences
Richey, J. E., J. M. Melack, A. K. Aufdenkampe, V. M. Ballester, and L. L. Hess ( 2002 ), Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO 2, Nature, 416 ( 6881 ), 617 – 620, doi:10.1038/416617a.
Sabine, C. L., et al. ( 2004 ), The oceanic sink for anthropogenic CO 2, Science, 305 ( 5682 ), 367 – 371, doi:10.1126/science.1097403.
Sleighter, R. L., and P. G. Hatcher ( 2007 ), The application of electrospray ionization coupled to ultrahigh resolution mass spectrometry for the molecular characterization of natural organic matter, J. Mass Spectrom., 42 ( 5 ), 559 – 574, doi:10.1002/jms.1221.
Sleighter, R. L., and P. G. Hatcher ( 2008 ), Molecular characterization of dissolved organic matter (DOM) along a river to ocean transect of the lower Chesapeake Bay by ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, Mar. Chem., 110 ( 3–4 ), 140 – 152, doi:10.1016/j.marchem.2008.04.008.
Sleighter, R. L., and P. G. Hatcher ( 2011 ), Fourier transform mass spectrometry for the molecular level characterization of natural organic matter: Instrument capabilities, applications, and limitations, in Fourier Transforms—Approach to Scientific Principles, edited by G. Nikolic, pp. 295 – 320, InTech, Vienna, stable URL: http://www.intechopen.com/articles/show/title/fourier‐transform‐mass‐spectrometry‐for‐the‐molecular‐level‐characterization‐of‐natural‐organic‐matt.
Sleighter, R. L., G. A. McKee, Z. Liu, and P. G. Hatcher ( 2008 ), Naturally present fatty acids as internal calibrants for Fourier transform mass spectra of dissolved organic matter, Limnol. Oceanogr.: Methods, 6, 246 – 253, doi:10.4319/lom.2008.6.246.
Sleighter, R. L., G. A. McKee, and P. G. Hatcher ( 2009 ), Direct Fourier transform mass spectral analysis of natural waters with low dissolved organic matter, Org. Geochem., 40 ( 1 ), 119 – 125, doi:10.1016/j.orggeochem.2008.09.012.
Sleighter, R. L., Z. Liu, J. Xue, and P. G. Hatcher ( 2010 ), Multivariate statistical approaches for the characterization of dissolved organic matter analyzed by ultrahigh resolution mass spectrometry, Environ. Sci. Technol., 44 ( 19 ), 7576 – 7582, doi:10.1021/es1002204.
Sleighter, R. L., H. Chen, A. S. Wozniak, A. S. Willoughby, P. Caricasole, and P. G. Hatcher ( 2012 ), Establishing a measure of reproducibility of ultrahigh‐resolution mass spectra for complex mixtures of natural organic matter, Anal. Chem., 84 ( 21 ), 9184 – 9191, doi:10.1021/ac3018026.
Stedmon, C. A., and S. Markager ( 2005 ), Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis, Limnol. Oceanogr., 50 ( 5 ), 1415 – 1426, doi:10.4319/lo.2005.50.5.1415.
Stenson, A. C., W. M. Landing, A. G. Marshall, and W. T. Cooper ( 2002 ), Ionization and fragmentation of humic substances in electrospray ionization Fourier transform‐ion cyclotron resonance mass spectrometry, Anal. Chem., 74 ( 17 ), 4397 – 4409, doi:10.1021/ac020019f.
Stenson, A. C., A. G. Marshall, and W. T. Cooper ( 2003 ), Exact masses and chemical formulas of individual Suwannee River fulvic acids from ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectra, Anal. Chem., 75 ( 6 ), 1275 – 1284, doi:10.1021/ac026106p.
Stubbins, A., R. G. M. Spencer, H. Chen, P. G. Hatcher, K. Mopper, P. J. Hernes, V. L. Mwamba, A. M. Mangangu, J. N. Wabakanghanzi, and J. Six ( 2010 ), Illuminated darkness: Molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry, Limnol. Oceanogr., 55 ( 4 ), 1467 – 1477, doi:10.4319/lo.2010.55.3.1467.
Stubbins, A., et al. ( 2012 ), Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers, Nat. Geosci., 5 ( 3 ), 198 – 201, doi:10.1038/ngeo1403.
Stubbins, A., P. A. del Giorgio, M. Berggren, J. F. Lapierre, and T. Dittmar ( 2013 ), What's in an EEM? Molecular signatures associated with dissolved organic fluorophores, paper presented at the Association for the Sciences of Limnology and Oceanography (ASLO) 2013 Aquatic Sciences Meeting, New Orleans, La.
Sweeney, B. W. ( 1993 ), Effects of streamside vegetation on macroinvertebrate communities of White Clay Creek, Proc. Acad. Nat. Sci. Philadelphia, 144, 291 – 340, stable URL: http://www.jstor.org/stable/4065013.
Tranvik, L. J., and S. Bertilsson ( 2001 ), Contrasting effects of solar UV radiation on dissolved organic sources for bacterial growth, Ecol. Lett., 4 ( 5 ), 458 – 463, doi:10.1046/j.1461‐0248.2001.00245.x.
Tranvik, L. J., et al. ( 2009 ), Lakes and reservoirs as regulators of carbon cycling and climate, Limnol. Oceanogr., 54 ( 6 ), 2298 – 2314, doi:10.4319/lo.2009.54.6_part_2.2298.
Vähätalo, A. V., H. Aarnos, and S. Mäntyniemi ( 2010 ), Biodegradability continuum and biodegradation kinetics of natural organic matter described by the beta distribution, Biogeochemistry, 100 ( 1–3 ), 227 – 240, doi:10.1007/s10533‐010‐9419‐4.
Volk, C. J., C. B. Volk, and L. A. Kaplan ( 1997 ), Chemical composition of biodegradable dissolved organic matter in streamwater, Limnol. Oceanogr., 42 ( 1 ), 39 – 44, stable URL: http://www.jstor.org/stable/2838860.
Ward, N. D., R. G. Keil, P. M. Medeiros, D. C. Brito, A. C. Cunha, T. Dittmar, P. L. Yager, A. V. Krusche, and J. E. Richey ( 2013 ), Degradation of terrestrially derived macromolecules in the Amazon River, Nat. Geosci., 6 ( 7 ), 530 – 533, doi:10.1038/ngeo1817.
Westrich, J. T., and R. A. Berner ( 1984 ), The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested, Limnol. Oceanogr., 29 ( 2 ), 236 – 249.
Wetzel, R. G. ( 2003 ), Dissolved organic carbon: Detrital energetics, metabolic regulators, and drivers of ecosystem stability of aquatic ecosystems, in Aquatic Ecosystems‐ Interactivity of Dissolved Organic Matter, edited by S. E. G. Findlay and R. L. Sinsabaugh, pp. 455 – 477, Academic Press, San Diego.
Wickland, K. P., J. C. Neff, and G. R. Aiken ( 2007 ), Dissolved organic carbon in Alaskan boreal forest: Sources, chemical characteristics, and biodegradability, Ecosystems, 10 ( 8 ), 1323 – 1340, doi:10.1007/s10021‐007‐9101‐4.
Yamashita, Y., and E. Tanoue ( 2003 ), Chemical characterization of protein‐like fluorophores in DOM in relation to aromatic amino acids, Mar. Chem., 82 ( 3–4 ), 255 – 271, doi:10.1016/S0304‐4203(03)00073‐2.
Abdulla, H. A. N., R. L. Sleighter, and P. G. Hatcher ( 2013 ), Two dimensional correlation analysis of Fourier transform ion cyclotron resonance mass spectra of dissolved organic matter: A new graphical analysis of trends, Anal. Chem., 85 ( 8 ), 3895 – 3902, doi:10.1021/ac303221j.
Aiken, G. R., D. M. McKnight, K. A. Thorn, and E. M. Thurman ( 1992 ), Isolation of hydrophilic organic acids from water using nonionic macroporous resins, Org. Geochem., 18 ( 4 ), 567 – 573, doi:10.1016/0146‐6380(92)90119‐I.
Aufdenkampe, A. K., E. Mayorga, P. A. Raymond, J. M. Melack, S. C. Doney, S. R. Alin, R. E. Aalto, and K. Yoo ( 2011 ), Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere, Front. Ecol. Environ., 9 ( 1 ), 53 – 60, doi:10.1890/100014.
Balcarczyk, K. L., J. B. Jones Jr., R. Jaffé, and N. Maie ( 2009 ), Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost, Biogeochemistry, 94 ( 3 ), 255 – 270, doi:10.1007/s10533‐009‐9324‐x.
Battin, T. J., L. A. Kaplan, S. Findlay, C. S. Hopkinson, E. Marti, A. I. Packman, J. D. Newbold, and F. Sabater ( 2008 ), Biophysical controls on organic carbon fluxes in fluvial networks, Nat. Geosci., 1 ( 2 ), 95 – 100, doi:10.1038/ngeo101.
Battin, T. J., S. Luyssaert, L. A. Kaplan, A. K. Aufdenkampe, A. Richter, and L. J. Tranvik ( 2009 ), The boundless carbon cycle, Nat. Geosci., 2 ( 9 ), 598 – 600, doi:10.1038/ngeo618.
Benner, R. ( 2003 ), Molecular indicators of the bioavailability of dissolved organic matter, in Aquatic Ecosystems—Interactivity of Dissolved Organic Matter, edited by S. E. G. Findlay and R. L. Sinsabaugh, pp. 121 – 138, Academic Press, San Diego.
Carlson, C. A. ( 2002 ), Production and comsumption processes, in Biogeochemistry of Marine Dissolved Organic Matter, edited by D. A. Hansell and C. A. Carlson, pp. 91 – 151, Academic Press, San Diego.
Chin, Y.‐P., G. R. Aiken, and K. M. Danielsen ( 1997 ), Binding of pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticity, Environ. Sci. Technol., 31 ( 6 ), 1630 – 1635, doi:10.1021/es960404k.
Cleveland, C. C., J. C. Neff, A. R. Townsend, and E. Hood ( 2004 ), Composition, dynamics, and fate of leached dissolved organic matter in terrestrial ecosystems: Results from a decomposition experiment, Ecosystems, 7 ( 3 ), 175 – 285, doi:10.1007/s10021‐003‐0236‐7.
Coble, P. G. ( 1996 ), Characterization of marine and terrestrial DOM in seawater using excitation‐emission matrix spectroscopy, Mar. Chem., 51 ( 4 ), 325 – 346, doi:10.1016/0304‐4203(95)00062‐3.
Cole, J. J., and N. F. Caraco ( 2001 ), Carbon in catchments: Connecting terrestrial carbon losses with aquatic metabolism, Mar. Freshwater Res., 52 ( 1 ), 101 – 110, doi:10.1071/MF00084.
Cole, J. J., et al. ( 2007 ), Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget, Ecosystems, 10 ( 1 ), 172 – 185, doi:10.1007/s10021‐006‐9013‐8.
Cory, R. M., and L. A. Kaplan ( 2012 ), Biological lability of streamwater fluorescent dissolved organic matter, Limnol. Oceanogr., 57 ( 5 ), 1347 – 1360, doi:10.4319/lo.2012.57.5.1347.
Cory, R. M., and L. A. Kaplan ( 2013 ), Erratum: Biological lability of streamwater fluorescent dissolved organic matter, Limnol. Oceanogr., 58 ( 1 ), 428, doi:10.4319/lo.2013.58.1.0428.
Cory, R. M., and D. M. McKnight ( 2005 ), Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter, Environ. Sci. Technol., 39 ( 21 ), 8142 – 8149, doi:10.1021/es0506962.
Cory, R. M., D. M. McKnight, Y.‐P. Chin, P. Miller, and C. L. Jaros ( 2007 ), Chemical characteristics of fulvic acids from Arctic surface waters: Microbial contributions and photochemical transformations, J. Geophys. Res., 112, G04S51, doi:10.1029/2006JG000343.
Cory, R. M., M. P. Miller, D. M. McKnight, J. J. Guerard, and P. L. Miller ( 2010a ), Effect of instrument‐specific response on the analysis of fulvic acid fluorescence spectra, Limnol. Oceanogr.: Methods, 8, 67 – 78, doi:10.4319/lom.2010.8.67.
Cory, R. M., K. McNeill, J. P. Cotner, A. Amado, J. M. Purcell, and A. G. Marshall ( 2010b ), Singlet oxygen in the coupled photochemical and biochemical oxidation of dissolved organic matter, Environ. Sci. Technol., 44 ( 10 ), 3683 – 3689.
op_rights IndexNoFollow
op_doi https://doi.org/10.1002/2013JG00260010.1038/416617a10.1126/science.109740310.1002/jms.122110.1016/j.marchem.2008.04.00810.4319/lom.2008.6.24610.1016/j.orggeochem.2008.09.01210.1021/es100220410.1021/ac301802610.4319/lo.2005.50.5.141510.1021/ac020019f10.102
container_title Izvestiya Rossiiskoi Akademii Nauk Seriya Geograficheskaya
container_issue 3
container_start_page 58
_version_ 1774713611751522304
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/108612 2023-08-20T04:03:12+02:00 A coupled geochemical and biogeochemical approach to characterize the bioreactivity of dissolved organic matter from a headwater stream Sleighter, Rachel L. Cory, Rose M. Kaplan, Louis A. Abdulla, Hussain A. N. Hatcher, Patrick G. 2014-08 application/pdf http://hdl.handle.net/2027.42/108612 https://doi.org/10.1002/2013JG002600 unknown Academic Press Wiley Periodicals, Inc. Sleighter, Rachel L.; Cory, Rose M.; Kaplan, Louis A.; Abdulla, Hussain A. N.; Hatcher, Patrick G. (2014). "A coupled geochemical and biogeochemical approach to characterize the bioreactivity of dissolved organic matter from a headwater stream." Journal of Geophysical Research: Biogeosciences 119(8): 1520-1537. 2169-8953 2169-8961 http://hdl.handle.net/2027.42/108612 doi:10.1002/2013JG002600 Journal of Geophysical Research: Biogeosciences Richey, J. E., J. M. Melack, A. K. Aufdenkampe, V. M. Ballester, and L. L. Hess ( 2002 ), Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO 2, Nature, 416 ( 6881 ), 617 – 620, doi:10.1038/416617a. Sabine, C. L., et al. ( 2004 ), The oceanic sink for anthropogenic CO 2, Science, 305 ( 5682 ), 367 – 371, doi:10.1126/science.1097403. Sleighter, R. L., and P. G. Hatcher ( 2007 ), The application of electrospray ionization coupled to ultrahigh resolution mass spectrometry for the molecular characterization of natural organic matter, J. Mass Spectrom., 42 ( 5 ), 559 – 574, doi:10.1002/jms.1221. Sleighter, R. L., and P. G. Hatcher ( 2008 ), Molecular characterization of dissolved organic matter (DOM) along a river to ocean transect of the lower Chesapeake Bay by ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, Mar. Chem., 110 ( 3–4 ), 140 – 152, doi:10.1016/j.marchem.2008.04.008. Sleighter, R. L., and P. G. Hatcher ( 2011 ), Fourier transform mass spectrometry for the molecular level characterization of natural organic matter: Instrument capabilities, applications, and limitations, in Fourier Transforms—Approach to Scientific Principles, edited by G. Nikolic, pp. 295 – 320, InTech, Vienna, stable URL: http://www.intechopen.com/articles/show/title/fourier‐transform‐mass‐spectrometry‐for‐the‐molecular‐level‐characterization‐of‐natural‐organic‐matt. Sleighter, R. L., G. A. McKee, Z. Liu, and P. G. Hatcher ( 2008 ), Naturally present fatty acids as internal calibrants for Fourier transform mass spectra of dissolved organic matter, Limnol. Oceanogr.: Methods, 6, 246 – 253, doi:10.4319/lom.2008.6.246. Sleighter, R. L., G. A. McKee, and P. G. Hatcher ( 2009 ), Direct Fourier transform mass spectral analysis of natural waters with low dissolved organic matter, Org. Geochem., 40 ( 1 ), 119 – 125, doi:10.1016/j.orggeochem.2008.09.012. Sleighter, R. L., Z. Liu, J. Xue, and P. G. Hatcher ( 2010 ), Multivariate statistical approaches for the characterization of dissolved organic matter analyzed by ultrahigh resolution mass spectrometry, Environ. Sci. Technol., 44 ( 19 ), 7576 – 7582, doi:10.1021/es1002204. Sleighter, R. L., H. Chen, A. S. Wozniak, A. S. Willoughby, P. Caricasole, and P. G. Hatcher ( 2012 ), Establishing a measure of reproducibility of ultrahigh‐resolution mass spectra for complex mixtures of natural organic matter, Anal. Chem., 84 ( 21 ), 9184 – 9191, doi:10.1021/ac3018026. Stedmon, C. A., and S. Markager ( 2005 ), Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis, Limnol. Oceanogr., 50 ( 5 ), 1415 – 1426, doi:10.4319/lo.2005.50.5.1415. Stenson, A. C., W. M. Landing, A. G. Marshall, and W. T. Cooper ( 2002 ), Ionization and fragmentation of humic substances in electrospray ionization Fourier transform‐ion cyclotron resonance mass spectrometry, Anal. Chem., 74 ( 17 ), 4397 – 4409, doi:10.1021/ac020019f. Stenson, A. C., A. G. Marshall, and W. T. Cooper ( 2003 ), Exact masses and chemical formulas of individual Suwannee River fulvic acids from ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectra, Anal. Chem., 75 ( 6 ), 1275 – 1284, doi:10.1021/ac026106p. Stubbins, A., R. G. M. Spencer, H. Chen, P. G. Hatcher, K. Mopper, P. J. Hernes, V. L. Mwamba, A. M. Mangangu, J. N. Wabakanghanzi, and J. Six ( 2010 ), Illuminated darkness: Molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry, Limnol. Oceanogr., 55 ( 4 ), 1467 – 1477, doi:10.4319/lo.2010.55.3.1467. Stubbins, A., et al. ( 2012 ), Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers, Nat. Geosci., 5 ( 3 ), 198 – 201, doi:10.1038/ngeo1403. Stubbins, A., P. A. del Giorgio, M. Berggren, J. F. Lapierre, and T. Dittmar ( 2013 ), What's in an EEM? Molecular signatures associated with dissolved organic fluorophores, paper presented at the Association for the Sciences of Limnology and Oceanography (ASLO) 2013 Aquatic Sciences Meeting, New Orleans, La. Sweeney, B. W. ( 1993 ), Effects of streamside vegetation on macroinvertebrate communities of White Clay Creek, Proc. Acad. Nat. Sci. Philadelphia, 144, 291 – 340, stable URL: http://www.jstor.org/stable/4065013. Tranvik, L. J., and S. Bertilsson ( 2001 ), Contrasting effects of solar UV radiation on dissolved organic sources for bacterial growth, Ecol. Lett., 4 ( 5 ), 458 – 463, doi:10.1046/j.1461‐0248.2001.00245.x. Tranvik, L. J., et al. ( 2009 ), Lakes and reservoirs as regulators of carbon cycling and climate, Limnol. Oceanogr., 54 ( 6 ), 2298 – 2314, doi:10.4319/lo.2009.54.6_part_2.2298. Vähätalo, A. V., H. Aarnos, and S. Mäntyniemi ( 2010 ), Biodegradability continuum and biodegradation kinetics of natural organic matter described by the beta distribution, Biogeochemistry, 100 ( 1–3 ), 227 – 240, doi:10.1007/s10533‐010‐9419‐4. Volk, C. J., C. B. Volk, and L. A. Kaplan ( 1997 ), Chemical composition of biodegradable dissolved organic matter in streamwater, Limnol. Oceanogr., 42 ( 1 ), 39 – 44, stable URL: http://www.jstor.org/stable/2838860. Ward, N. D., R. G. Keil, P. M. Medeiros, D. C. Brito, A. C. Cunha, T. Dittmar, P. L. Yager, A. V. Krusche, and J. E. Richey ( 2013 ), Degradation of terrestrially derived macromolecules in the Amazon River, Nat. Geosci., 6 ( 7 ), 530 – 533, doi:10.1038/ngeo1817. Westrich, J. T., and R. A. Berner ( 1984 ), The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested, Limnol. Oceanogr., 29 ( 2 ), 236 – 249. Wetzel, R. G. ( 2003 ), Dissolved organic carbon: Detrital energetics, metabolic regulators, and drivers of ecosystem stability of aquatic ecosystems, in Aquatic Ecosystems‐ Interactivity of Dissolved Organic Matter, edited by S. E. G. Findlay and R. L. Sinsabaugh, pp. 455 – 477, Academic Press, San Diego. Wickland, K. P., J. C. Neff, and G. R. Aiken ( 2007 ), Dissolved organic carbon in Alaskan boreal forest: Sources, chemical characteristics, and biodegradability, Ecosystems, 10 ( 8 ), 1323 – 1340, doi:10.1007/s10021‐007‐9101‐4. Yamashita, Y., and E. Tanoue ( 2003 ), Chemical characterization of protein‐like fluorophores in DOM in relation to aromatic amino acids, Mar. Chem., 82 ( 3–4 ), 255 – 271, doi:10.1016/S0304‐4203(03)00073‐2. Abdulla, H. A. N., R. L. Sleighter, and P. G. Hatcher ( 2013 ), Two dimensional correlation analysis of Fourier transform ion cyclotron resonance mass spectra of dissolved organic matter: A new graphical analysis of trends, Anal. Chem., 85 ( 8 ), 3895 – 3902, doi:10.1021/ac303221j. Aiken, G. R., D. M. McKnight, K. A. Thorn, and E. M. Thurman ( 1992 ), Isolation of hydrophilic organic acids from water using nonionic macroporous resins, Org. Geochem., 18 ( 4 ), 567 – 573, doi:10.1016/0146‐6380(92)90119‐I. Aufdenkampe, A. K., E. Mayorga, P. A. Raymond, J. M. Melack, S. C. Doney, S. R. Alin, R. E. Aalto, and K. Yoo ( 2011 ), Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere, Front. Ecol. Environ., 9 ( 1 ), 53 – 60, doi:10.1890/100014. Balcarczyk, K. L., J. B. Jones Jr., R. Jaffé, and N. Maie ( 2009 ), Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost, Biogeochemistry, 94 ( 3 ), 255 – 270, doi:10.1007/s10533‐009‐9324‐x. Battin, T. J., L. A. Kaplan, S. Findlay, C. S. Hopkinson, E. Marti, A. I. Packman, J. D. Newbold, and F. Sabater ( 2008 ), Biophysical controls on organic carbon fluxes in fluvial networks, Nat. Geosci., 1 ( 2 ), 95 – 100, doi:10.1038/ngeo101. Battin, T. J., S. Luyssaert, L. A. Kaplan, A. K. Aufdenkampe, A. Richter, and L. J. Tranvik ( 2009 ), The boundless carbon cycle, Nat. Geosci., 2 ( 9 ), 598 – 600, doi:10.1038/ngeo618. Benner, R. ( 2003 ), Molecular indicators of the bioavailability of dissolved organic matter, in Aquatic Ecosystems—Interactivity of Dissolved Organic Matter, edited by S. E. G. Findlay and R. L. Sinsabaugh, pp. 121 – 138, Academic Press, San Diego. Carlson, C. A. ( 2002 ), Production and comsumption processes, in Biogeochemistry of Marine Dissolved Organic Matter, edited by D. A. Hansell and C. A. Carlson, pp. 91 – 151, Academic Press, San Diego. Chin, Y.‐P., G. R. Aiken, and K. M. Danielsen ( 1997 ), Binding of pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticity, Environ. Sci. Technol., 31 ( 6 ), 1630 – 1635, doi:10.1021/es960404k. Cleveland, C. C., J. C. Neff, A. R. Townsend, and E. Hood ( 2004 ), Composition, dynamics, and fate of leached dissolved organic matter in terrestrial ecosystems: Results from a decomposition experiment, Ecosystems, 7 ( 3 ), 175 – 285, doi:10.1007/s10021‐003‐0236‐7. Coble, P. G. ( 1996 ), Characterization of marine and terrestrial DOM in seawater using excitation‐emission matrix spectroscopy, Mar. Chem., 51 ( 4 ), 325 – 346, doi:10.1016/0304‐4203(95)00062‐3. Cole, J. J., and N. F. Caraco ( 2001 ), Carbon in catchments: Connecting terrestrial carbon losses with aquatic metabolism, Mar. Freshwater Res., 52 ( 1 ), 101 – 110, doi:10.1071/MF00084. Cole, J. J., et al. ( 2007 ), Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget, Ecosystems, 10 ( 1 ), 172 – 185, doi:10.1007/s10021‐006‐9013‐8. Cory, R. M., and L. A. Kaplan ( 2012 ), Biological lability of streamwater fluorescent dissolved organic matter, Limnol. Oceanogr., 57 ( 5 ), 1347 – 1360, doi:10.4319/lo.2012.57.5.1347. Cory, R. M., and L. A. Kaplan ( 2013 ), Erratum: Biological lability of streamwater fluorescent dissolved organic matter, Limnol. Oceanogr., 58 ( 1 ), 428, doi:10.4319/lo.2013.58.1.0428. Cory, R. M., and D. M. McKnight ( 2005 ), Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter, Environ. Sci. Technol., 39 ( 21 ), 8142 – 8149, doi:10.1021/es0506962. Cory, R. M., D. M. McKnight, Y.‐P. Chin, P. Miller, and C. L. Jaros ( 2007 ), Chemical characteristics of fulvic acids from Arctic surface waters: Microbial contributions and photochemical transformations, J. Geophys. Res., 112, G04S51, doi:10.1029/2006JG000343. Cory, R. M., M. P. Miller, D. M. McKnight, J. J. Guerard, and P. L. Miller ( 2010a ), Effect of instrument‐specific response on the analysis of fulvic acid fluorescence spectra, Limnol. Oceanogr.: Methods, 8, 67 – 78, doi:10.4319/lom.2010.8.67. Cory, R. M., K. McNeill, J. P. Cotner, A. Amado, J. M. Purcell, and A. G. Marshall ( 2010b ), Singlet oxygen in the coupled photochemical and biochemical oxidation of dissolved organic matter, Environ. Sci. Technol., 44 ( 10 ), 3683 – 3689. IndexNoFollow Dissolved Organic Matter Bioreactivity FTICR‐MS EEMs Microbial Degradation Geological Sciences Science Article 2014 ftumdeepblue https://doi.org/10.1002/2013JG00260010.1038/416617a10.1126/science.109740310.1002/jms.122110.1016/j.marchem.2008.04.00810.4319/lom.2008.6.24610.1016/j.orggeochem.2008.09.01210.1021/es100220410.1021/ac301802610.4319/lo.2005.50.5.141510.1021/ac020019f10.102 2023-07-31T20:51:02Z The bioreactivity or susceptibility of dissolved organic matter (DOM) to microbial degradation in streams and rivers is of critical importance to global change studies, but a comprehensive understanding of DOM bioreactivity has been elusive due, in part, to the stunningly diverse assemblages of organic molecules within DOM. We approach this problem by employing a range of techniques to characterize DOM as it flows through biofilm reactors: dissolved organic carbon (DOC) concentrations, excitation emission matrix spectroscopy (EEMs), and ultrahigh resolution mass spectrometry. The EEMs and mass spectral data were analyzed using a combination of multivariate statistical approaches. We found that 45% of stream water DOC was biodegraded by microorganisms, including 31–45% of the humic DOC. This bioreactive DOM separated into two different groups: (1) H/C centered at 1.5 with O/C 0.1–0.5 or (2) low H/C of 0.5–1.0 spanning O/C 0.2–0.7 that were positively correlated (Spearman ranking) with chromophoric and fluorescent DOM (CDOM and FDOM, respectively). DOM that was more recalcitrant and resistant to microbial degradation aligned tightly in the center of the van Krevelen space (H/C 1.0–1.5, O/C 0.25–0.6) and negatively correlated (Spearman ranking) with CDOM and FDOM. These findings were supported further by principal component analysis and 2‐D correlation analysis of the relative magnitudes of the mass spectral peaks assigned to molecular formulas. This study demonstrates that our approach of processing stream water through bioreactors followed by EEMs and FTICR‐MS analyses, in combination with multivariate statistical analysis, allows for precise, robust characterization of compound bioreactivity and associated molecular level composition. Key Points Humic DOM is susceptible to microbial degradation along with peptide‐like DOM Labile DOM can be distinguished from recalcitrant DOM in van Krevelen space EEMs and FTICR‐MS chemically characterize bioreactive and recalcitrant DOM Peer Reviewed ... Article in Journal/Newspaper Arctic University of Michigan: Deep Blue Izvestiya Rossiiskoi Akademii Nauk Seriya Geograficheskaya 3 58