Aerosol radiative forcing from the 2010 Eyjafjallajökull volcanic eruptions

Although the 2010 volcanic eruptions of Eyjafjallajökull did not exert a large climate forcing, several features of their emissions favored weaker aerosol cooling or stronger warming than commonly attributed to volcanic events. These features include a high ratio of fine ash to SO 2 , occurrence nea...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Atmospheres
Main Authors: Flanner, M. G., Gardner, A. S., Eckhardt, S., Stohl, A., Perket, J.
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley Periodicals, Inc. 2014
Subjects:
Ash
Online Access:http://hdl.handle.net/2027.42/108312
https://doi.org/10.1002/2014JD021977
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/108312
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic EyjafjallajöKull
Climate
Volcano
Ash
Sulfate
Forcing
Atmospheric and Oceanic Sciences
Science
spellingShingle EyjafjallajöKull
Climate
Volcano
Ash
Sulfate
Forcing
Atmospheric and Oceanic Sciences
Science
Flanner, M. G.
Gardner, A. S.
Eckhardt, S.
Stohl, A.
Perket, J.
Aerosol radiative forcing from the 2010 Eyjafjallajökull volcanic eruptions
topic_facet EyjafjallajöKull
Climate
Volcano
Ash
Sulfate
Forcing
Atmospheric and Oceanic Sciences
Science
description Although the 2010 volcanic eruptions of Eyjafjallajökull did not exert a large climate forcing, several features of their emissions favored weaker aerosol cooling or stronger warming than commonly attributed to volcanic events. These features include a high ratio of fine ash to SO 2 , occurrence near reflective surfaces exposed to strong insolation, and the production of very little stratospheric sulfate. We derive plausible ranges of optical properties and top‐of‐atmosphere direct radiative forcing for aerosol emissions from these events and find that shortwave cooling from sulfate was largely offset by warming from ash deposition to cryospheric surfaces and longwave warming from atmospheric ash and sulfate. Shortwave forcing from atmospheric ash was slightly negative in the global mean under central estimates of optical properties, though this forcing term was uniquely sensitive to the simulated distribution of clouds. The forcing components sum to near climate‐neutral global mean 2010 instantaneous (−1.9 mWm −2 ) and effective (−0.5 mWm −2 ) radiative forcing, where the latter is elevated by high efficacy of snow‐deposited ash. Ranges in net instantaneous (−7.3 to +2.8 mWm −2 ) and effective (−7.2 to +4.9 mWm −2 ) forcing derived from sensitivity studies are dominated by uncertainty in ash shortwave absorptivity. Forcing from airborne ash decayed quickly, while sulfate forcing persisted for several weeks and ash deposits continued to darken snow and sea ice surfaces for months following the eruption. Despite small global forcing, monthly averaged net forcing exceeded 1 Wm −2 in some regions. These findings indicate that ash can be an important component of climate forcing from high‐latitude volcanic eruptions and in some circumstances may exceed sulfate forcing. Key Points We derive aerosol radiative forcing from the 2010 eruptions of Eyjafjallajokull Sulfate cooling was nearly offset by ash longwave and in‐snow shortwave heating We cannot rule out positive net forcing because of uncertainty in ash properties ...
format Article in Journal/Newspaper
author Flanner, M. G.
Gardner, A. S.
Eckhardt, S.
Stohl, A.
Perket, J.
author_facet Flanner, M. G.
Gardner, A. S.
Eckhardt, S.
Stohl, A.
Perket, J.
author_sort Flanner, M. G.
title Aerosol radiative forcing from the 2010 Eyjafjallajökull volcanic eruptions
title_short Aerosol radiative forcing from the 2010 Eyjafjallajökull volcanic eruptions
title_full Aerosol radiative forcing from the 2010 Eyjafjallajökull volcanic eruptions
title_fullStr Aerosol radiative forcing from the 2010 Eyjafjallajökull volcanic eruptions
title_full_unstemmed Aerosol radiative forcing from the 2010 Eyjafjallajökull volcanic eruptions
title_sort aerosol radiative forcing from the 2010 eyjafjallajökull volcanic eruptions
publisher Wiley Periodicals, Inc.
publishDate 2014
url http://hdl.handle.net/2027.42/108312
https://doi.org/10.1002/2014JD021977
long_lat ENVELOPE(-19.633,-19.633,63.631,63.631)
geographic Eyjafjallajokull
geographic_facet Eyjafjallajokull
genre Arctic
Eyjafjallajökull
Sea ice
genre_facet Arctic
Eyjafjallajökull
Sea ice
op_relation Flanner, M. G.; Gardner, A. S.; Eckhardt, S.; Stohl, A.; Perket, J. (2014). "Aerosol radiative forcing from the 2010 Eyjafjallajökull volcanic eruptions." Journal of Geophysical Research: Atmospheres 119(15): 9481-9491.
2169-897X
2169-8996
http://hdl.handle.net/2027.42/108312
doi:10.1002/2014JD021977
Journal of Geophysical Research: Atmospheres
Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan ( 2003 ), Global analysis of sea surface temperature, sea ice, and night marine air temperature since the late 19th century, J. Geophys. Res., 108 ( D14 ), 4407, doi:10.1029/2002JD002670.
Young, C. L., I. N. Sokolik, and J. Dufek ( 2012 ), Regional radiative impact of volcanic aerosol from the 2009 eruption of Mt. Redoubt, Atmos. Chem. Phys., 12 ( 8 ), 3699 – 3715, doi:10.5194/acp‐12‐3699‐2012.
Grainger, R. G., D. M. Peters, G. E. Thomas, A. J. A. Smith, R. Siddans, E. Carboni, and A. Dudhia ( 2013 ), Measuring volcanic plume and ash properties from space, in Remote Sensing of Volcanoes and Volcanic Processes: Integrating Observation and Modelling, edited by D. Pyle and T. Mather, Geol. Soc. London Spec. Publ., 380, 293 – 320.
Gudmundsson, M. T., et al. ( 2012 ), Ash generation and distribution from the April–May 2010 eruption of Eyjafjallajökull, Iceland, Sci. Rep., 2, 572, doi:10.1038/srep00572.
Hansen, J., and L. Nazarenko ( 2004 ), Soot climate forcing via snow and ice albedos, Proc. Natl. Acad. Sci., 101 ( 2 ), 423 – 428.
Hansen, J., et al. ( 2005 ), Efficacy of climate forcings, J. Geophys. Res., 110, D18104, doi:10.1029/2005JD005776.
Hansen, J., et al. ( 2007 ), Climate simulations for 1880–2003 with GISS modelE, Clim. Dyn., 29, 661 – 696, doi:10.1007/s00382‐007‐0255‐8.
Heard, I. P. C., A. J. Manning, J. M. Haywood, C. Witham, A. Redington, A. Jones, L. Clarisse, and A. Bourassa ( 2012 ), A comparison of atmospheric dispersion model predictions with observations of SO 2 and sulphate aerosol from volcanic eruptions, J. Geophys. Res., 117, D00U22, doi:10.1029/2011JD016791.
Helbert, J., A. Maturilli, T. Roush, and H. Mannstein ( 2011 ), Deriving optical constants of volcanish ash using measurements from the planetary emissivity laboratory at DLR, in Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2011 3rd Workshop on, pp. 1 – 5, IEEE, Lisbon, Portugal.
Hervo, M., et al. ( 2012 ), Physical and optical properties of 2010 Eyjafjallajökull volcanic eruption aerosol: Ground‐based, lidar and airborne measurements in France, Atmos. Chem. Phys., 12 ( 4 ), 1721 – 1736, doi:10.5194/acp‐12‐1721‐2012.
Hess, M., P. Koepke, and I. Schult ( 1998 ), Optical properties of aerosols and clouds: The software package OPAC, Bull. Am. Meteorol. Soc., 79 ( 5 ), 831 – 844.
Holland, M., D. A. Bailey, B. P. Briegleb, B. Light, and E. Hunke ( 2012 ), Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic sea ice, J. Clim., 25, 1413 – 1430, doi:10.1175/JCLI‐D‐11‐00078.1.
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins ( 2008 ), Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models, J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.
Jacobson, M. Z. ( 2010 ), Short‐term effects of controlling fossil‐fuel soot, biofuel soot and gases, and methane on climate, Arctic ice, and air pollution health, J. Geophys. Res., 115, D14209, doi:10.1029/2009JD013795.
Kylling, A., M. Kahnert, H. Lindqvist, and T. Nousiainen ( 2014 ), Volcanic ash infrared signature: Porous non‐spherical ash particle shapes compared to homogeneous spherical ash particles, Atmos. Meas. Tech., 7 ( 4 ), 919 – 929, doi:10.5194/amt‐7‐919‐2014.
Le Hir, G., Y. Donnadieu, G. Krinner, and G. Ramstein ( 2010 ), Toward the snowball Earth deglaciation., Clim. Dyn., 35 ( 2–3 ), 285 – 297, doi:10.1007/s00382‐010‐0748‐8.
Mishchenko, M. I., and L. D. Travis ( 1998 ), Capabilities and limitations of a current FORTRAN implementation of the T‐matrix method for randomly oriented, rotationally symmetric scatterers, J. Quant. Spectrosc. Radiat. Transfer, 60 ( 3 ), 309 – 324.
Myhre, G., et al. ( 2013 ), Anthropogenic and natural radiative forcing, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker et al., pp. 659 – 740, Cambridge Univ. Press, Cambridge, U. K., and New York.
O'Dowd, C., et al. ( 2012 ), The Eyjafjallajökull ash plume—Part I: Physical, chemical and optical characteristics, Atmos. Environ., 48, 129 – 142, doi:10.1016/j.atmosenv.2011.07.004.
Oleson, K. W., et al. ( 2010 ), Technical description of version 4.0 of the Community Land Model (CLM), Tech. Rep. NCAR/TN–478+STR, Natl. Cent. for Atmos. Res., Boulder, Colo.
Patterson, E. M. ( 1981 ), Measurements of the imaginary part of the refractive index between 300 and 700 nanometers for Mount St. Helens ash, Science, 211 ( 4484 ), 836 – 838.
Patterson, E. M., C. O. Pollard, and I. Galindo ( 1983 ), Optical properties of the ash from El Chichon Volcano, Geophys. Res. Lett., 10 ( 4 ), 317 – 320, doi:10.1029/GL010i004p00317.
Pollack, J. B., O. B. Toon, and B. K. Khare ( 1973 ), Optical properties of some terrestrial rocks and glasses, Icarus, 19, 372 – 389.
Rasch, P. J., M. C. Barth, J. T. Kiehl, S. E. Schwartz, and C. M. Benkovitz ( 2000 ), A description of the global sulfur cycle and its controlling processes in the National Center for Atmospheric Research Community Climate Model, J. Geophys. Res., 105, 1367 – 1385.
Rasch, P. J., P. J. Crutzen, and D. B. Coleman ( 2008 ), Exploring the geoengineering of climate using stratospheric sulfate aerosols: The role of particle size, Geophys. Res. Lett., 35, L02809, doi:10.1029/2007GL032179.
Abbot, D. S., and R. T. Pierrehumbert ( 2010 ), Mudball: Surface dust and snowball Earth deglaciation, J. Geophys. Res., 115, D03104, doi:10.1029/2009JD012007.
Alterskjær, K., J. E. Kristjánsson, and C. Hoose ( 2010 ), Do anthropogenic aerosols enhance or suppress the surface cloud forcing in the Arctic?, J. Geophys. Res, 115, D22204, doi:10.1029/2010JD014015.
Ansmann, A., et al. ( 2010 ), The 16 April 2010 major volcanic ash plume over central Europe: EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany, Geophys. Res. Lett., 37, L13810, doi:10.1029/2010GL043809.
Bingemer, H., et al. ( 2012 ), Atmospheric ice nuclei in the Eyjafjallajökull volcanic ash plume, Atmos. Chem. Phys., 12 ( 2 ), 857 – 867, doi:10.5194/acp‐12‐857‐2012.
Björnsson, H., F. Pálsson, S. Gudmundsson, E. Magnússon, G. Adalgeirsdóttir, T. Jóhannesson, E. Berthier, O. Sigurdsson, and T. Thorsteinsson ( 2013 ), Contribution of Icelandic ice caps to sea level rise: Trends and variability since the Little Ice Age, Geophys. Res. Lett., 40 ( 8 ), 1546 – 1550, doi:10.1002/grl.50278.
Bond, T. C., et al. ( 2013 ), Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res. Atmos., 118, 5380 – 5552, doi:10.1002/jgrd.50171.
Briegleb, B. P., and B. Light ( 2007 ), A Delta‐Eddington multiple scattering parameterization for solar radiation in the sea ice component of the Community Climate System Model, Tech. Rep. NCAR/TN–472+STR, Natl. Cent. for Atmos. Res., Boulder, Colo.
Bukowiecki, N., et al. ( 2011 ), Ground‐based and airborne in‐situ measurements of the Eyjafjallajökull volcanic aerosol plume in Switzerland in spring 2010, Atmos. Chem. Phys., 11 ( 19 ), 10,011 – 10,030, doi:10.5194/acp‐11‐10011‐2011.
Clarke, A. D., R. J. Charlson, and J. A. Ogren ( 1983 ), Stratospheric aerosol light absorption before and after El Chichon, Geophys. Res. Lett., 10 ( 11 ), 1017 – 1020, doi:10.1029/GL010i011p01017.
Conway, H., A. Gades, and C. F. Raymond ( 1996 ), Albedo of dirty snow during conditions of melt, Water Resour. Res., 32 ( 6 ), 1713 – 1718.
Derimian, Y., O. Dubovik, D. Tanre, P. Goloub, T. Lapyonok, and A. Mortier ( 2012 ), Optical properties and radiative forcing of the Eyjafjallajökull volcanic ash layer observed over Lille, France, in 2010, J. Geophys. Res., 117, D00U25, doi:10.1029/2011JD016815.
Doherty, S. J., C. M. Bitz, and M. G. Flanner ( 2014 ), Biases in modeled surface snow BC mixing ratios in prescribed aerosol climate model runs, Atmos. Chem. Phys. Discuss., 14 ( 9 ), 13,167 – 13,196, doi:10.5194/acpd‐14‐13167‐2014.
Flanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch ( 2007 ), Present‐day climate forcing and response from black carbon in snow, J. Geophys. Res., 112, D11202, doi:10.1029/2006JD008003.
Flemming, J., and A. Inness ( 2013 ), Volcanic sulfur dioxide plume forecasts based on UV satellite retrievals for the 2011 Grimsvötn and the 2010 Eyjafjallajökull eruption, J. Geophys. Res. Atmos., 118, 10,172 – 10,189, doi:10.1002/jgrd.50753.
Gasteiger, J., S. Groß, V. Freudenthaler, and M. Wiegner ( 2011 ), Volcanic ash from Iceland over Munich: Mass concentration retrieved from ground‐based remote sensing measurements, Atmos. Chem. Phys., 11 ( 5 ), 2209 – 2223, doi:10.5194/acp‐11‐2209‐2011.
Robock, A. ( 2000 ), Volcanic eruptions and climate, Rev. Geophys., 38 ( 2 ), 198 – 219, doi:10.1029/1998RG000054.
Robock, A. ( 2013 ), The latest on volcanic eruptions and climate, Eos Trans. AGU, 94 ( 35 ), 305 – 306, doi:10.1002/2013EO350001.
Rocha‐Lima, A., J. V. Martins, L. A. Remer, N. A. Krotkov, M. H. Tabacniks, Y. Ben‐Ami, and P. Artaxo ( 2014 ), Optical, microphysical and compositional properties of the Eyjafjallajökull volcanic ash, Atmos. Chem. Phys. Discuss., 14 ( 9 ), 13,271 – 13,300, doi:10.5194/acpd‐14‐13271‐2014.
Schumann, U., et al. ( 2011 ), Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010, Atmos. Chem. Phys., 11 ( 5 ), 2245 – 2279, doi:10.5194/acp‐11‐2245‐2011.
op_rights IndexNoFollow
op_doi https://doi.org/10.1002/2014JD02197710.1029/2002JD00267010.5194/acp‐12‐3699‐201210.1038/srep0057210.1029/2005JD00577610.1007/s00382‐007‐0255‐810.1029/2011JD01679110.5194/acp‐12‐1721‐201210.1175/JCLI‐D‐11‐00078.110.1029/2008JD00994410.1029/2009JD01379510.5
container_title Journal of Geophysical Research: Atmospheres
container_volume 119
container_issue 15
container_start_page 9481
op_container_end_page 9491
_version_ 1774713587473842176
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/108312 2023-08-20T04:03:11+02:00 Aerosol radiative forcing from the 2010 Eyjafjallajökull volcanic eruptions Flanner, M. G. Gardner, A. S. Eckhardt, S. Stohl, A. Perket, J. 2014-08-16 application/pdf http://hdl.handle.net/2027.42/108312 https://doi.org/10.1002/2014JD021977 unknown Wiley Periodicals, Inc. IEEE, Lisbon Flanner, M. G.; Gardner, A. S.; Eckhardt, S.; Stohl, A.; Perket, J. (2014). "Aerosol radiative forcing from the 2010 Eyjafjallajökull volcanic eruptions." Journal of Geophysical Research: Atmospheres 119(15): 9481-9491. 2169-897X 2169-8996 http://hdl.handle.net/2027.42/108312 doi:10.1002/2014JD021977 Journal of Geophysical Research: Atmospheres Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan ( 2003 ), Global analysis of sea surface temperature, sea ice, and night marine air temperature since the late 19th century, J. Geophys. Res., 108 ( D14 ), 4407, doi:10.1029/2002JD002670. Young, C. L., I. N. Sokolik, and J. Dufek ( 2012 ), Regional radiative impact of volcanic aerosol from the 2009 eruption of Mt. Redoubt, Atmos. Chem. Phys., 12 ( 8 ), 3699 – 3715, doi:10.5194/acp‐12‐3699‐2012. Grainger, R. G., D. M. Peters, G. E. Thomas, A. J. A. Smith, R. Siddans, E. Carboni, and A. Dudhia ( 2013 ), Measuring volcanic plume and ash properties from space, in Remote Sensing of Volcanoes and Volcanic Processes: Integrating Observation and Modelling, edited by D. Pyle and T. Mather, Geol. Soc. London Spec. Publ., 380, 293 – 320. Gudmundsson, M. T., et al. ( 2012 ), Ash generation and distribution from the April–May 2010 eruption of Eyjafjallajökull, Iceland, Sci. Rep., 2, 572, doi:10.1038/srep00572. Hansen, J., and L. Nazarenko ( 2004 ), Soot climate forcing via snow and ice albedos, Proc. Natl. Acad. Sci., 101 ( 2 ), 423 – 428. Hansen, J., et al. ( 2005 ), Efficacy of climate forcings, J. Geophys. Res., 110, D18104, doi:10.1029/2005JD005776. Hansen, J., et al. ( 2007 ), Climate simulations for 1880–2003 with GISS modelE, Clim. Dyn., 29, 661 – 696, doi:10.1007/s00382‐007‐0255‐8. Heard, I. P. C., A. J. Manning, J. M. Haywood, C. Witham, A. Redington, A. Jones, L. Clarisse, and A. Bourassa ( 2012 ), A comparison of atmospheric dispersion model predictions with observations of SO 2 and sulphate aerosol from volcanic eruptions, J. Geophys. Res., 117, D00U22, doi:10.1029/2011JD016791. Helbert, J., A. Maturilli, T. Roush, and H. Mannstein ( 2011 ), Deriving optical constants of volcanish ash using measurements from the planetary emissivity laboratory at DLR, in Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2011 3rd Workshop on, pp. 1 – 5, IEEE, Lisbon, Portugal. Hervo, M., et al. ( 2012 ), Physical and optical properties of 2010 Eyjafjallajökull volcanic eruption aerosol: Ground‐based, lidar and airborne measurements in France, Atmos. Chem. Phys., 12 ( 4 ), 1721 – 1736, doi:10.5194/acp‐12‐1721‐2012. Hess, M., P. Koepke, and I. Schult ( 1998 ), Optical properties of aerosols and clouds: The software package OPAC, Bull. Am. Meteorol. Soc., 79 ( 5 ), 831 – 844. Holland, M., D. A. Bailey, B. P. Briegleb, B. Light, and E. Hunke ( 2012 ), Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic sea ice, J. Clim., 25, 1413 – 1430, doi:10.1175/JCLI‐D‐11‐00078.1. Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins ( 2008 ), Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models, J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944. Jacobson, M. Z. ( 2010 ), Short‐term effects of controlling fossil‐fuel soot, biofuel soot and gases, and methane on climate, Arctic ice, and air pollution health, J. Geophys. Res., 115, D14209, doi:10.1029/2009JD013795. Kylling, A., M. Kahnert, H. Lindqvist, and T. Nousiainen ( 2014 ), Volcanic ash infrared signature: Porous non‐spherical ash particle shapes compared to homogeneous spherical ash particles, Atmos. Meas. Tech., 7 ( 4 ), 919 – 929, doi:10.5194/amt‐7‐919‐2014. Le Hir, G., Y. Donnadieu, G. Krinner, and G. Ramstein ( 2010 ), Toward the snowball Earth deglaciation., Clim. Dyn., 35 ( 2–3 ), 285 – 297, doi:10.1007/s00382‐010‐0748‐8. Mishchenko, M. I., and L. D. Travis ( 1998 ), Capabilities and limitations of a current FORTRAN implementation of the T‐matrix method for randomly oriented, rotationally symmetric scatterers, J. Quant. Spectrosc. Radiat. Transfer, 60 ( 3 ), 309 – 324. Myhre, G., et al. ( 2013 ), Anthropogenic and natural radiative forcing, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker et al., pp. 659 – 740, Cambridge Univ. Press, Cambridge, U. K., and New York. O'Dowd, C., et al. ( 2012 ), The Eyjafjallajökull ash plume—Part I: Physical, chemical and optical characteristics, Atmos. Environ., 48, 129 – 142, doi:10.1016/j.atmosenv.2011.07.004. Oleson, K. W., et al. ( 2010 ), Technical description of version 4.0 of the Community Land Model (CLM), Tech. Rep. NCAR/TN–478+STR, Natl. Cent. for Atmos. Res., Boulder, Colo. Patterson, E. M. ( 1981 ), Measurements of the imaginary part of the refractive index between 300 and 700 nanometers for Mount St. Helens ash, Science, 211 ( 4484 ), 836 – 838. Patterson, E. M., C. O. Pollard, and I. Galindo ( 1983 ), Optical properties of the ash from El Chichon Volcano, Geophys. Res. Lett., 10 ( 4 ), 317 – 320, doi:10.1029/GL010i004p00317. Pollack, J. B., O. B. Toon, and B. K. Khare ( 1973 ), Optical properties of some terrestrial rocks and glasses, Icarus, 19, 372 – 389. Rasch, P. J., M. C. Barth, J. T. Kiehl, S. E. Schwartz, and C. M. Benkovitz ( 2000 ), A description of the global sulfur cycle and its controlling processes in the National Center for Atmospheric Research Community Climate Model, J. Geophys. Res., 105, 1367 – 1385. Rasch, P. J., P. J. Crutzen, and D. B. Coleman ( 2008 ), Exploring the geoengineering of climate using stratospheric sulfate aerosols: The role of particle size, Geophys. Res. Lett., 35, L02809, doi:10.1029/2007GL032179. Abbot, D. S., and R. T. Pierrehumbert ( 2010 ), Mudball: Surface dust and snowball Earth deglaciation, J. Geophys. Res., 115, D03104, doi:10.1029/2009JD012007. Alterskjær, K., J. E. Kristjánsson, and C. Hoose ( 2010 ), Do anthropogenic aerosols enhance or suppress the surface cloud forcing in the Arctic?, J. Geophys. Res, 115, D22204, doi:10.1029/2010JD014015. Ansmann, A., et al. ( 2010 ), The 16 April 2010 major volcanic ash plume over central Europe: EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany, Geophys. Res. Lett., 37, L13810, doi:10.1029/2010GL043809. Bingemer, H., et al. ( 2012 ), Atmospheric ice nuclei in the Eyjafjallajökull volcanic ash plume, Atmos. Chem. Phys., 12 ( 2 ), 857 – 867, doi:10.5194/acp‐12‐857‐2012. Björnsson, H., F. Pálsson, S. Gudmundsson, E. Magnússon, G. Adalgeirsdóttir, T. Jóhannesson, E. Berthier, O. Sigurdsson, and T. Thorsteinsson ( 2013 ), Contribution of Icelandic ice caps to sea level rise: Trends and variability since the Little Ice Age, Geophys. Res. Lett., 40 ( 8 ), 1546 – 1550, doi:10.1002/grl.50278. Bond, T. C., et al. ( 2013 ), Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res. Atmos., 118, 5380 – 5552, doi:10.1002/jgrd.50171. Briegleb, B. P., and B. Light ( 2007 ), A Delta‐Eddington multiple scattering parameterization for solar radiation in the sea ice component of the Community Climate System Model, Tech. Rep. NCAR/TN–472+STR, Natl. Cent. for Atmos. Res., Boulder, Colo. Bukowiecki, N., et al. ( 2011 ), Ground‐based and airborne in‐situ measurements of the Eyjafjallajökull volcanic aerosol plume in Switzerland in spring 2010, Atmos. Chem. Phys., 11 ( 19 ), 10,011 – 10,030, doi:10.5194/acp‐11‐10011‐2011. Clarke, A. D., R. J. Charlson, and J. A. Ogren ( 1983 ), Stratospheric aerosol light absorption before and after El Chichon, Geophys. Res. Lett., 10 ( 11 ), 1017 – 1020, doi:10.1029/GL010i011p01017. Conway, H., A. Gades, and C. F. Raymond ( 1996 ), Albedo of dirty snow during conditions of melt, Water Resour. Res., 32 ( 6 ), 1713 – 1718. Derimian, Y., O. Dubovik, D. Tanre, P. Goloub, T. Lapyonok, and A. Mortier ( 2012 ), Optical properties and radiative forcing of the Eyjafjallajökull volcanic ash layer observed over Lille, France, in 2010, J. Geophys. Res., 117, D00U25, doi:10.1029/2011JD016815. Doherty, S. J., C. M. Bitz, and M. G. Flanner ( 2014 ), Biases in modeled surface snow BC mixing ratios in prescribed aerosol climate model runs, Atmos. Chem. Phys. Discuss., 14 ( 9 ), 13,167 – 13,196, doi:10.5194/acpd‐14‐13167‐2014. Flanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch ( 2007 ), Present‐day climate forcing and response from black carbon in snow, J. Geophys. Res., 112, D11202, doi:10.1029/2006JD008003. Flemming, J., and A. Inness ( 2013 ), Volcanic sulfur dioxide plume forecasts based on UV satellite retrievals for the 2011 Grimsvötn and the 2010 Eyjafjallajökull eruption, J. Geophys. Res. Atmos., 118, 10,172 – 10,189, doi:10.1002/jgrd.50753. Gasteiger, J., S. Groß, V. Freudenthaler, and M. Wiegner ( 2011 ), Volcanic ash from Iceland over Munich: Mass concentration retrieved from ground‐based remote sensing measurements, Atmos. Chem. Phys., 11 ( 5 ), 2209 – 2223, doi:10.5194/acp‐11‐2209‐2011. Robock, A. ( 2000 ), Volcanic eruptions and climate, Rev. Geophys., 38 ( 2 ), 198 – 219, doi:10.1029/1998RG000054. Robock, A. ( 2013 ), The latest on volcanic eruptions and climate, Eos Trans. AGU, 94 ( 35 ), 305 – 306, doi:10.1002/2013EO350001. Rocha‐Lima, A., J. V. Martins, L. A. Remer, N. A. Krotkov, M. H. Tabacniks, Y. Ben‐Ami, and P. Artaxo ( 2014 ), Optical, microphysical and compositional properties of the Eyjafjallajökull volcanic ash, Atmos. Chem. Phys. Discuss., 14 ( 9 ), 13,271 – 13,300, doi:10.5194/acpd‐14‐13271‐2014. Schumann, U., et al. ( 2011 ), Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010, Atmos. Chem. Phys., 11 ( 5 ), 2245 – 2279, doi:10.5194/acp‐11‐2245‐2011. IndexNoFollow EyjafjallajöKull Climate Volcano Ash Sulfate Forcing Atmospheric and Oceanic Sciences Science Article 2014 ftumdeepblue https://doi.org/10.1002/2014JD02197710.1029/2002JD00267010.5194/acp‐12‐3699‐201210.1038/srep0057210.1029/2005JD00577610.1007/s00382‐007‐0255‐810.1029/2011JD01679110.5194/acp‐12‐1721‐201210.1175/JCLI‐D‐11‐00078.110.1029/2008JD00994410.1029/2009JD01379510.5 2023-07-31T20:59:10Z Although the 2010 volcanic eruptions of Eyjafjallajökull did not exert a large climate forcing, several features of their emissions favored weaker aerosol cooling or stronger warming than commonly attributed to volcanic events. These features include a high ratio of fine ash to SO 2 , occurrence near reflective surfaces exposed to strong insolation, and the production of very little stratospheric sulfate. We derive plausible ranges of optical properties and top‐of‐atmosphere direct radiative forcing for aerosol emissions from these events and find that shortwave cooling from sulfate was largely offset by warming from ash deposition to cryospheric surfaces and longwave warming from atmospheric ash and sulfate. Shortwave forcing from atmospheric ash was slightly negative in the global mean under central estimates of optical properties, though this forcing term was uniquely sensitive to the simulated distribution of clouds. The forcing components sum to near climate‐neutral global mean 2010 instantaneous (−1.9 mWm −2 ) and effective (−0.5 mWm −2 ) radiative forcing, where the latter is elevated by high efficacy of snow‐deposited ash. Ranges in net instantaneous (−7.3 to +2.8 mWm −2 ) and effective (−7.2 to +4.9 mWm −2 ) forcing derived from sensitivity studies are dominated by uncertainty in ash shortwave absorptivity. Forcing from airborne ash decayed quickly, while sulfate forcing persisted for several weeks and ash deposits continued to darken snow and sea ice surfaces for months following the eruption. Despite small global forcing, monthly averaged net forcing exceeded 1 Wm −2 in some regions. These findings indicate that ash can be an important component of climate forcing from high‐latitude volcanic eruptions and in some circumstances may exceed sulfate forcing. Key Points We derive aerosol radiative forcing from the 2010 eruptions of Eyjafjallajokull Sulfate cooling was nearly offset by ash longwave and in‐snow shortwave heating We cannot rule out positive net forcing because of uncertainty in ash properties ... Article in Journal/Newspaper Arctic Eyjafjallajökull Sea ice University of Michigan: Deep Blue Eyjafjallajokull ENVELOPE(-19.633,-19.633,63.631,63.631) Journal of Geophysical Research: Atmospheres 119 15 9481 9491