Radiative forcing of organic aerosol in the atmosphere and on snow: Effects of SOA and brown carbon

Organic aerosols (OA) play an important role in climate change. However, very few calculations of global OA radiative forcing include secondary organic aerosol (SOA) or the light‐absorbing part of OA (brown carbon). Here we use a global model to assess the radiative forcing associated with the chang...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Atmospheres
Main Authors: Lin, Guangxing, Penner, Joyce E., Flanner, Mark G., Sillman, Sanford, Xu, Li, Zhou, Cheng
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley Periodicals, Inc. 2014
Subjects:
SOA
Online Access:https://hdl.handle.net/2027.42/108060
https://doi.org/10.1002/2013JD021186
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/108060
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic Organic Aerosol
SOA
Radiative Forcing
Brown Carbon
Climate Change
Atmospheric Chemistry
Atmospheric and Oceanic Sciences
Science
spellingShingle Organic Aerosol
SOA
Radiative Forcing
Brown Carbon
Climate Change
Atmospheric Chemistry
Atmospheric and Oceanic Sciences
Science
Lin, Guangxing
Penner, Joyce E.
Flanner, Mark G.
Sillman, Sanford
Xu, Li
Zhou, Cheng
Radiative forcing of organic aerosol in the atmosphere and on snow: Effects of SOA and brown carbon
topic_facet Organic Aerosol
SOA
Radiative Forcing
Brown Carbon
Climate Change
Atmospheric Chemistry
Atmospheric and Oceanic Sciences
Science
description Organic aerosols (OA) play an important role in climate change. However, very few calculations of global OA radiative forcing include secondary organic aerosol (SOA) or the light‐absorbing part of OA (brown carbon). Here we use a global model to assess the radiative forcing associated with the change in primary organic aerosol (POA) and SOA between present‐day and preindustrial conditions in both the atmosphere and the land snow/sea ice. Anthropogenic emissions are shown to substantially influence the SOA formation rate, causing it to increase by 29 Tg/yr (93%) since preindustrial times. We examine the effects of varying the refractive indices, size distributions for POA and SOA, and brown carbon fraction in SOA. The increase of SOA exerts a direct forcing ranging from −0.12 to −0.31 W m −2 and a first indirect forcing in warm‐phase clouds ranging from −0.22 to −0.29 W m −2 , with the range due to different assumed SOA size distributions and refractive indices. The increase of POA since preindustrial times causes a direct forcing varying from −0.06 to −0.11 W m −2 , when strongly and weakly absorbing refractive indices for brown carbon are used. The change in the total OA exerts a direct forcing ranging from −0.14 to −0.40 W m −2 . The atmospheric absorption from brown carbon ranges from +0.22 to +0.57 W m −2 , which corresponds to 27%~70% of the black carbon (BC) absorption predicted in the model. The radiative forcing of OA deposited in land snow and sea ice ranges from +0.0011 to +0.0031 W m −2 or as large as 24% of the forcing caused by BC in snow and ice simulated by the model. Key Points A fully explicit SOA formation model is used to determine SOA radiative forcing The direct radiative forcing by brown carbon in SOA is estimated The radiative forcing of OA in snow/ice is estimated for the first time Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/108060/1/jgrd51450.pdf
format Article in Journal/Newspaper
author Lin, Guangxing
Penner, Joyce E.
Flanner, Mark G.
Sillman, Sanford
Xu, Li
Zhou, Cheng
author_facet Lin, Guangxing
Penner, Joyce E.
Flanner, Mark G.
Sillman, Sanford
Xu, Li
Zhou, Cheng
author_sort Lin, Guangxing
title Radiative forcing of organic aerosol in the atmosphere and on snow: Effects of SOA and brown carbon
title_short Radiative forcing of organic aerosol in the atmosphere and on snow: Effects of SOA and brown carbon
title_full Radiative forcing of organic aerosol in the atmosphere and on snow: Effects of SOA and brown carbon
title_fullStr Radiative forcing of organic aerosol in the atmosphere and on snow: Effects of SOA and brown carbon
title_full_unstemmed Radiative forcing of organic aerosol in the atmosphere and on snow: Effects of SOA and brown carbon
title_sort radiative forcing of organic aerosol in the atmosphere and on snow: effects of soa and brown carbon
publisher Wiley Periodicals, Inc.
publishDate 2014
url https://hdl.handle.net/2027.42/108060
https://doi.org/10.1002/2013JD021186
genre Sea ice
genre_facet Sea ice
op_relation Lin, Guangxing; Penner, Joyce E.; Flanner, Mark G.; Sillman, Sanford; Xu, Li; Zhou, Cheng (2014). "Radiative forcing of organic aerosol in the atmosphere and on snow: Effects of SOA and brown carbon." Journal of Geophysical Research: Atmospheres 119(12): 7453-7476.
2169-897X
2169-8996
https://hdl.handle.net/2027.42/108060
doi:10.1002/2013JD021186
Journal of Geophysical Research: Atmospheres
Paulot, F., J. D. Crounse, H. G. Kjaergaard, A. Kurten, J. M. St Clair, J. H. Seinfeld, and P. O. Wennberg ( 2009 ), Unexpected epoxide formation in the gas‐phase photooxidation of isoprene, Science, 325 ( 5941 ), 730 – 733.
Saleh, R., C. J. Hennigan, G. R. McMeeking, W. K. Chuang, E. S. Robinson, H. Coe, N. M. Donahue, and A. L. Robinson ( 2013 ), Absorptivity of brown carbon in fresh and photo‐chemically aged biomass‐burning emissions, Atmos. Chem. Phys., 13 ( 15 ), 7683 – 7693, doi:10.5194/acp‐13‐7683‐2013.
Sareen, N., S. G. Moussa, and V. F. McNeill ( 2013 ), Photochemical aging of light‐absorbing secondary organic aerosol material, J. Phys. Chem. A, 117 ( 14 ), 2987 – 2996.
Schulz, M., et al. ( 2006 ), Radiative forcing by aerosols as derived from the AeroCom present‐day and pre‐industrial simulations, Atmos. Chem. Phys., 6 ( 12 ), 5225 – 5246, doi:10.5194/acp‐6‐5225‐2006.
Scott, C. E., et al. ( 2014 ), The direct and indirect radiative effects of biogenic secondary organic aerosol, Atmos. Chem. Phys., 14, 447 – 470, doi:10.5194/acp‐14‐447‐2014.
Shapiro, E. L., J. Szprengiel, N. Sareen, C. N. Jen, M. R. Giordano, and V. F. McNeill ( 2009 ), Light‐absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics, Atmos. Chem. Phys., 9 ( 7 ), 2289 – 2300, doi:10.5194/acp‐9‐2289‐2009.
Smith, S. J., H. Pitcher, and T. M. L. Wigley ( 2001 ), Global and regional anthropogenic sulfur dioxide emissions, Global Planet. Change, 29 ( 1–2 ), 99 – 119, doi:10.1016/S0921‐8181(00)00057‐6.
Spracklen, D. V., et al. ( 2011 ), Aerosol mass spectrometer constraint on the global secondary organic aerosol budget, Atmos. Chem. Phys., 11 ( 23 ), 12,109 – 12,136.
Takemura, T., T. Nozawa, S. Emori, T. Y. Nakajima, and T. Nakajima ( 2005 ), Simulation of climate response to aerosol direct and indirect effects with aerosol transport‐radiation model, J. Geophys. Res., 110, D02202, doi:10.1029/2004JD005029.
Trainic, M., A. Abo Riziq, A. Lavi, J. M. Flores, and Y. Rudich ( 2011 ), The optical, physical and chemical properties of the products of glyoxal uptake on ammonium sulfate seed aerosols, Atmos. Chem. Phys., 11 ( 18 ), 9697 – 9707, doi:10.5194/acp‐11‐9697‐2011.
Tsigaridis, K., M. Krol, F. J. Dentener, Y. Balkanski, J. Lathiere, S. Metzger, D. A. Hauglustaine, and M. Kanakidou ( 2006 ), Change in global aerosol composition since preindustrial times, Atmos. Chem. Phys., 6, 5143 – 5162.
Turpin, B. J., and H. J. Lim ( 2001 ), Species contributions to PM2. 5 mass concentrations: Revisiting common assumptions for estimating organic mass, Aerosol Sci. Technol., 35, 602 – 610.
Updyke, K. M., T. B. Nguyen, and S. A. Nizkorodov ( 2012 ), Formation of brown carbon via reactions of ammonia with secondary organic aerosols from biogenic and anthropogenic precursors, Atmos. Environ., 63, 22 – 31, doi:10.1016/j.atmosenv.2012.09.012.
van Aardenne, J. A., F. J. Dentener, J. G. J. Olivier, C. G. M. Klein Goldewijk, and J. Lelieveld ( 2001 ), A 1 × 1 degree resolution dataset of historical anthropogenic trace gas emissions for the period 1890–1990, Global Biogeochem. Cycles, 15, 909 – 928, doi:10.1029/2000GB001265.
Wang, M. H., and J. E. Penner ( 2009 ), Aerosol indirect forcing in a global model with particle nucleation, Atmos. Chem. Phys., 9 ( 1 ), 239 – 260.
Wang, M. H., J. E. Penner, and X. H. Liu ( 2009 ), Coupled IMPACT aerosol and NCAR CAM3 model: Evaluation of predicted aerosol number and size distribution, J. Geophys. Res., 114, D06302, doi:10.1029/2008JD010459.
Wang, Y. H., D. J. Jacob, and J. A. Logan ( 1998 ), Global simulation of tropospheric O‐3‐NOx‐hydrocarbon chemistry 1. Model formulation, J. Geophys. Res., 103, 10,713 – 10,725, doi:10.1029/98JD00158.
Waxman, E. M., K. Dzepina, B. Ervens, J. Lee‐Taylor, B. Aumont, J. L. Jimenez, S. Madronich, and R. Volkamer ( 2013 ), Secondary organic aerosol formation from semi‐ and intermediate‐volatility organic compounds and glyoxal: Relevance of O/C as a tracer for aqueous multiphase chemistry, Geophys. Res. Lett., 40, 978 – 982, doi:10.1002/grl.50203.
Woo, J. L., D. D. Kim, A. N. Schwier, R. Li, and V. F. McNeill ( 2013 ), Aqueous aerosol SOA formation: Impact on aerosol physical properties, Faraday Discuss., 165, 357 – 367.
Yang, M., S. G. Howell, and J. Zhuang ( 2009 ), Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China–interpretations of atmospheric measurements during EAST‐AIRE, Atmos. Chem. Phys., 9, 2035 – 2050, doi:10.5194/acp‐9‐2035‐2009.
Young, P. J., et al. ( 2013 ), Pre‐industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), Atmos. Chem. Phys., 13 ( 4 ), 2063 – 2090, doi:10.5194/acp‐13‐2063‐2013.
Yun, Y., J. E. Penner, and O. Popovicheva ( 2013 ), The effects of hygroscopicity on ice nucleation of fossil fuel combustion aerosols in mixed‐phase clouds, Atmos. Chem. Phys., 13, 4339 – 4348, doi:10.5194/acp‐13‐4339‐2013.
Zhang, Q., et al. ( 2007 ), Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically‐influenced Northern Hemisphere midlatitudes, Geophys. Res. Lett., 34, L13801, doi:10.1029/2007GL029979.
Zhang, S., J. E. Penner, and O. Torres ( 2005 ), Inverse modeling of biomass burning emissions using Total Ozone Mapping Spectrometer aerosol index for 1997, J. Geophys. Res., 110, D21306, doi:10.1029/2004JD005738.
Zhang, X., Y.‐H. Lin, J. D. Surratt, P. Zotter, A. S. H. Prévôt, and R. J. Weber ( 2011 ), Light‐absorbing soluble organic aerosol in Los Angeles and Atlanta: A contrast in secondary organic aerosol, Geophys. Res. Lett., 38, L21810, doi:10.1029/2011GL049385.
Zhang, X., Y.‐H. Lin, J. D. Surratt, and R. J. Weber ( 2013 ), Sources, composition and absorption angström exponent of light‐absorbing organic components in aerosol extracts from the Los Angeles Basin, Environ. Sci. Technol., 47 ( 8 ), 3685 – 3693.
Zhong, M., and M. Jang ( 2011 ), Light absorption coefficient measurement of SOA using a UV–Visible spectrometer connected with an integrating sphere, Atmos. Environ., 45, 4263 – 4271.
Abdul‐Razzak, H., and S. J. Ghan ( 2000 ), A parameterization of aerosol activation 2. Multiple aerosol types, J. Geophys. Res., 105, 6837 – 6844.
Abdul‐Razzak, H., and S. J. Ghan ( 2002 ), A parameterization of aerosol activation ‐ 3. Sectional representation, J. Geophys. Res., 107 ( D3 ), 4026, doi:10.1029/2001JD000483.
Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton ( 2000 ), Reduction of tropical cloudiness by soot, Science, 288, 1042 – 1047.
Andreae, M. O., and A. Gelencsér ( 2006 ), Black carbon or brown carbon? The nature of light‐absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131 – 3148.
Andres, R. J., and A. D. Kasgnoc ( 1998 ), A time‐averaged inventory of subaerial volcanic sulfur emissions, J. Geophys. Res., 103, 25,251 – 25,261, doi:10.1029/98JD02091.
Arola, A., G. Schuster, and G. Myhre ( 2011 ), Inferring absorbing organic carbon content from AERONET data, Atmos. Chem. Phys., 11, 215 – 225, doi:10.5194/acp‐11‐215‐2011.
Bahadur, R., P. S. Praveen, Y. Xu, and V. Ramanathan ( 2012 ), Solar absorption by elemental and brown carbon determined from spectral observations, Proc. Natl. Acad. Sci. U. S. A., 109 ( 43 ), 17,366 – 17,371.
Bey, I., D. J. Jacob, R. M. Yantosca, J. A. Logan, B. D. Field, A. M. Fiore, Q. B. Li, H. G. Y. Liu, L. J. Mickley, and M. G. Schultz ( 2001 ), Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106, 23,073 – 23,095, doi:10.1029/2001JD000807.
Bond, T. C. ( 2001 ), Spectral dependence of visible light absorption by carbonaceous particles emitted from coal combustion, Geophys. Res. Lett., 28, 4075 – 4078, doi:10.1029/2001GL013652.
Bond, T. C., and R. W. Bergstrom ( 2006 ), Light absorption by carbonaceous particles: An investigative review, Aerosol Sci. Technol., 40 ( 1 ), 27 – 67.
Bond, T. C., M. Bussemer, B. Wehner, S. Keller, R. J. Charlson, and J. Heintzenberg ( 1999 ), Light Absorption by Primary Particle Emissions from a Lignite Burning Plant, Environ. Sci. Technol., 33 ( 21 ), 3887 – 3891, doi:10.1021/es9810538.
Bond, T. C., et al. ( 2013 ), Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res. Atmos., 118, 5380 – 5552, doi:10.1002/jgrd.50171.
Bones, D. L., D. K. Henricksen, S. A. Mang, M. Gonsior, A. P. Bateman, T. B. Nguyen, W. J. Cooper, and S. A. Nizkorodov ( 2010 ), Appearance of strong absorbers and fluorophores in limonene‐O 3 secondary organic aerosol due to NH 4 + ‐mediated chemical aging over long time scales, J. Geophys. Res., 115, D05203, doi:10.1029/2009JD012864.
Cappa, C. D., D. L. Che, S. H. Kessler, J. H. Kroll, and K. R. Wilson ( 2011 ), Variations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation, J. Geophys. Res., 116, D15204, doi:10.1029/2011JD015918.
Chakrabarty, R. K., H. Moosmüller, L. W. A. Chen, K. Lewis, W. P. Arnott, C. Mazzoleni, M. K. Dubey, C. E. Wold, W. M. Hao, and S. M. Kreidenweis ( 2010 ), Brown carbon in tar balls from smoldering biomass combustion, Atmos. Chem. Phys., 10 ( 13 ), 6363 – 6370, doi:10.5194/acp‐10‐6363‐2010.
Chang, J. L., and J. E. Thompson ( 2010 ), Characterization of colored products formed during irradiation of aqueous solutions containing H2O2 and phenolic compounds, Atmos. Environ., 44 ( 4 ), 541 – 551.
Chen, Y., and T. C. Bond ( 2010 ), Light absorption by organic carbon from wood combustion, Atmos. Chem. Phys., 10, 1773 – 1787, doi:10.5194/acp‐10‐1773‐2010.
op_rights IndexNoFollow
op_doi https://doi.org/10.1002/2013JD02118610.5194/acp‐13‐7683‐201310.5194/acp‐6‐5225‐200610.5194/acp‐14‐447‐201410.5194/acp‐9‐2289‐200910.1016/S0921‐8181(00)00057‐610.1029/2004JD00502910.5194/acp‐11‐9697‐201110.1016/j.atmosenv.2012.09.01210.1029/2000GB00126510.
container_title Journal of Geophysical Research: Atmospheres
container_volume 119
container_issue 12
container_start_page 7453
op_container_end_page 7476
_version_ 1774723396564680704
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/108060 2023-08-20T04:09:44+02:00 Radiative forcing of organic aerosol in the atmosphere and on snow: Effects of SOA and brown carbon Lin, Guangxing Penner, Joyce E. Flanner, Mark G. Sillman, Sanford Xu, Li Zhou, Cheng 2014-06-27 application/pdf https://hdl.handle.net/2027.42/108060 https://doi.org/10.1002/2013JD021186 unknown Wiley Periodicals, Inc. Cambridge Univ. Press Lin, Guangxing; Penner, Joyce E.; Flanner, Mark G.; Sillman, Sanford; Xu, Li; Zhou, Cheng (2014). "Radiative forcing of organic aerosol in the atmosphere and on snow: Effects of SOA and brown carbon." Journal of Geophysical Research: Atmospheres 119(12): 7453-7476. 2169-897X 2169-8996 https://hdl.handle.net/2027.42/108060 doi:10.1002/2013JD021186 Journal of Geophysical Research: Atmospheres Paulot, F., J. D. Crounse, H. G. Kjaergaard, A. Kurten, J. M. St Clair, J. H. Seinfeld, and P. O. Wennberg ( 2009 ), Unexpected epoxide formation in the gas‐phase photooxidation of isoprene, Science, 325 ( 5941 ), 730 – 733. Saleh, R., C. J. Hennigan, G. R. McMeeking, W. K. Chuang, E. S. Robinson, H. Coe, N. M. Donahue, and A. L. Robinson ( 2013 ), Absorptivity of brown carbon in fresh and photo‐chemically aged biomass‐burning emissions, Atmos. Chem. Phys., 13 ( 15 ), 7683 – 7693, doi:10.5194/acp‐13‐7683‐2013. Sareen, N., S. G. Moussa, and V. F. McNeill ( 2013 ), Photochemical aging of light‐absorbing secondary organic aerosol material, J. Phys. Chem. A, 117 ( 14 ), 2987 – 2996. Schulz, M., et al. ( 2006 ), Radiative forcing by aerosols as derived from the AeroCom present‐day and pre‐industrial simulations, Atmos. Chem. Phys., 6 ( 12 ), 5225 – 5246, doi:10.5194/acp‐6‐5225‐2006. Scott, C. E., et al. ( 2014 ), The direct and indirect radiative effects of biogenic secondary organic aerosol, Atmos. Chem. Phys., 14, 447 – 470, doi:10.5194/acp‐14‐447‐2014. Shapiro, E. L., J. Szprengiel, N. Sareen, C. N. Jen, M. R. Giordano, and V. F. McNeill ( 2009 ), Light‐absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics, Atmos. Chem. Phys., 9 ( 7 ), 2289 – 2300, doi:10.5194/acp‐9‐2289‐2009. Smith, S. J., H. Pitcher, and T. M. L. Wigley ( 2001 ), Global and regional anthropogenic sulfur dioxide emissions, Global Planet. Change, 29 ( 1–2 ), 99 – 119, doi:10.1016/S0921‐8181(00)00057‐6. Spracklen, D. V., et al. ( 2011 ), Aerosol mass spectrometer constraint on the global secondary organic aerosol budget, Atmos. Chem. Phys., 11 ( 23 ), 12,109 – 12,136. Takemura, T., T. Nozawa, S. Emori, T. Y. Nakajima, and T. Nakajima ( 2005 ), Simulation of climate response to aerosol direct and indirect effects with aerosol transport‐radiation model, J. Geophys. Res., 110, D02202, doi:10.1029/2004JD005029. Trainic, M., A. Abo Riziq, A. Lavi, J. M. Flores, and Y. Rudich ( 2011 ), The optical, physical and chemical properties of the products of glyoxal uptake on ammonium sulfate seed aerosols, Atmos. Chem. Phys., 11 ( 18 ), 9697 – 9707, doi:10.5194/acp‐11‐9697‐2011. Tsigaridis, K., M. Krol, F. J. Dentener, Y. Balkanski, J. Lathiere, S. Metzger, D. A. Hauglustaine, and M. Kanakidou ( 2006 ), Change in global aerosol composition since preindustrial times, Atmos. Chem. Phys., 6, 5143 – 5162. Turpin, B. J., and H. J. Lim ( 2001 ), Species contributions to PM2. 5 mass concentrations: Revisiting common assumptions for estimating organic mass, Aerosol Sci. Technol., 35, 602 – 610. Updyke, K. M., T. B. Nguyen, and S. A. Nizkorodov ( 2012 ), Formation of brown carbon via reactions of ammonia with secondary organic aerosols from biogenic and anthropogenic precursors, Atmos. Environ., 63, 22 – 31, doi:10.1016/j.atmosenv.2012.09.012. van Aardenne, J. A., F. J. Dentener, J. G. J. Olivier, C. G. M. Klein Goldewijk, and J. Lelieveld ( 2001 ), A 1 × 1 degree resolution dataset of historical anthropogenic trace gas emissions for the period 1890–1990, Global Biogeochem. Cycles, 15, 909 – 928, doi:10.1029/2000GB001265. Wang, M. H., and J. E. Penner ( 2009 ), Aerosol indirect forcing in a global model with particle nucleation, Atmos. Chem. Phys., 9 ( 1 ), 239 – 260. Wang, M. H., J. E. Penner, and X. H. Liu ( 2009 ), Coupled IMPACT aerosol and NCAR CAM3 model: Evaluation of predicted aerosol number and size distribution, J. Geophys. Res., 114, D06302, doi:10.1029/2008JD010459. Wang, Y. H., D. J. Jacob, and J. A. Logan ( 1998 ), Global simulation of tropospheric O‐3‐NOx‐hydrocarbon chemistry 1. Model formulation, J. Geophys. Res., 103, 10,713 – 10,725, doi:10.1029/98JD00158. Waxman, E. M., K. Dzepina, B. Ervens, J. Lee‐Taylor, B. Aumont, J. L. Jimenez, S. Madronich, and R. Volkamer ( 2013 ), Secondary organic aerosol formation from semi‐ and intermediate‐volatility organic compounds and glyoxal: Relevance of O/C as a tracer for aqueous multiphase chemistry, Geophys. Res. Lett., 40, 978 – 982, doi:10.1002/grl.50203. Woo, J. L., D. D. Kim, A. N. Schwier, R. Li, and V. F. McNeill ( 2013 ), Aqueous aerosol SOA formation: Impact on aerosol physical properties, Faraday Discuss., 165, 357 – 367. Yang, M., S. G. Howell, and J. Zhuang ( 2009 ), Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China–interpretations of atmospheric measurements during EAST‐AIRE, Atmos. Chem. Phys., 9, 2035 – 2050, doi:10.5194/acp‐9‐2035‐2009. Young, P. J., et al. ( 2013 ), Pre‐industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), Atmos. Chem. Phys., 13 ( 4 ), 2063 – 2090, doi:10.5194/acp‐13‐2063‐2013. Yun, Y., J. E. Penner, and O. Popovicheva ( 2013 ), The effects of hygroscopicity on ice nucleation of fossil fuel combustion aerosols in mixed‐phase clouds, Atmos. Chem. Phys., 13, 4339 – 4348, doi:10.5194/acp‐13‐4339‐2013. Zhang, Q., et al. ( 2007 ), Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically‐influenced Northern Hemisphere midlatitudes, Geophys. Res. Lett., 34, L13801, doi:10.1029/2007GL029979. Zhang, S., J. E. Penner, and O. Torres ( 2005 ), Inverse modeling of biomass burning emissions using Total Ozone Mapping Spectrometer aerosol index for 1997, J. Geophys. Res., 110, D21306, doi:10.1029/2004JD005738. Zhang, X., Y.‐H. Lin, J. D. Surratt, P. Zotter, A. S. H. Prévôt, and R. J. Weber ( 2011 ), Light‐absorbing soluble organic aerosol in Los Angeles and Atlanta: A contrast in secondary organic aerosol, Geophys. Res. Lett., 38, L21810, doi:10.1029/2011GL049385. Zhang, X., Y.‐H. Lin, J. D. Surratt, and R. J. Weber ( 2013 ), Sources, composition and absorption angström exponent of light‐absorbing organic components in aerosol extracts from the Los Angeles Basin, Environ. Sci. Technol., 47 ( 8 ), 3685 – 3693. Zhong, M., and M. Jang ( 2011 ), Light absorption coefficient measurement of SOA using a UV–Visible spectrometer connected with an integrating sphere, Atmos. Environ., 45, 4263 – 4271. Abdul‐Razzak, H., and S. J. Ghan ( 2000 ), A parameterization of aerosol activation 2. Multiple aerosol types, J. Geophys. Res., 105, 6837 – 6844. Abdul‐Razzak, H., and S. J. Ghan ( 2002 ), A parameterization of aerosol activation ‐ 3. Sectional representation, J. Geophys. Res., 107 ( D3 ), 4026, doi:10.1029/2001JD000483. Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton ( 2000 ), Reduction of tropical cloudiness by soot, Science, 288, 1042 – 1047. Andreae, M. O., and A. Gelencsér ( 2006 ), Black carbon or brown carbon? The nature of light‐absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131 – 3148. Andres, R. J., and A. D. Kasgnoc ( 1998 ), A time‐averaged inventory of subaerial volcanic sulfur emissions, J. Geophys. Res., 103, 25,251 – 25,261, doi:10.1029/98JD02091. Arola, A., G. Schuster, and G. Myhre ( 2011 ), Inferring absorbing organic carbon content from AERONET data, Atmos. Chem. Phys., 11, 215 – 225, doi:10.5194/acp‐11‐215‐2011. Bahadur, R., P. S. Praveen, Y. Xu, and V. Ramanathan ( 2012 ), Solar absorption by elemental and brown carbon determined from spectral observations, Proc. Natl. Acad. Sci. U. S. A., 109 ( 43 ), 17,366 – 17,371. Bey, I., D. J. Jacob, R. M. Yantosca, J. A. Logan, B. D. Field, A. M. Fiore, Q. B. Li, H. G. Y. Liu, L. J. Mickley, and M. G. Schultz ( 2001 ), Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106, 23,073 – 23,095, doi:10.1029/2001JD000807. Bond, T. C. ( 2001 ), Spectral dependence of visible light absorption by carbonaceous particles emitted from coal combustion, Geophys. Res. Lett., 28, 4075 – 4078, doi:10.1029/2001GL013652. Bond, T. C., and R. W. Bergstrom ( 2006 ), Light absorption by carbonaceous particles: An investigative review, Aerosol Sci. Technol., 40 ( 1 ), 27 – 67. Bond, T. C., M. Bussemer, B. Wehner, S. Keller, R. J. Charlson, and J. Heintzenberg ( 1999 ), Light Absorption by Primary Particle Emissions from a Lignite Burning Plant, Environ. Sci. Technol., 33 ( 21 ), 3887 – 3891, doi:10.1021/es9810538. Bond, T. C., et al. ( 2013 ), Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res. Atmos., 118, 5380 – 5552, doi:10.1002/jgrd.50171. Bones, D. L., D. K. Henricksen, S. A. Mang, M. Gonsior, A. P. Bateman, T. B. Nguyen, W. J. Cooper, and S. A. Nizkorodov ( 2010 ), Appearance of strong absorbers and fluorophores in limonene‐O 3 secondary organic aerosol due to NH 4 + ‐mediated chemical aging over long time scales, J. Geophys. Res., 115, D05203, doi:10.1029/2009JD012864. Cappa, C. D., D. L. Che, S. H. Kessler, J. H. Kroll, and K. R. Wilson ( 2011 ), Variations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation, J. Geophys. Res., 116, D15204, doi:10.1029/2011JD015918. Chakrabarty, R. K., H. Moosmüller, L. W. A. Chen, K. Lewis, W. P. Arnott, C. Mazzoleni, M. K. Dubey, C. E. Wold, W. M. Hao, and S. M. Kreidenweis ( 2010 ), Brown carbon in tar balls from smoldering biomass combustion, Atmos. Chem. Phys., 10 ( 13 ), 6363 – 6370, doi:10.5194/acp‐10‐6363‐2010. Chang, J. L., and J. E. Thompson ( 2010 ), Characterization of colored products formed during irradiation of aqueous solutions containing H2O2 and phenolic compounds, Atmos. Environ., 44 ( 4 ), 541 – 551. Chen, Y., and T. C. Bond ( 2010 ), Light absorption by organic carbon from wood combustion, Atmos. Chem. Phys., 10, 1773 – 1787, doi:10.5194/acp‐10‐1773‐2010. IndexNoFollow Organic Aerosol SOA Radiative Forcing Brown Carbon Climate Change Atmospheric Chemistry Atmospheric and Oceanic Sciences Science Article 2014 ftumdeepblue https://doi.org/10.1002/2013JD02118610.5194/acp‐13‐7683‐201310.5194/acp‐6‐5225‐200610.5194/acp‐14‐447‐201410.5194/acp‐9‐2289‐200910.1016/S0921‐8181(00)00057‐610.1029/2004JD00502910.5194/acp‐11‐9697‐201110.1016/j.atmosenv.2012.09.01210.1029/2000GB00126510. 2023-07-31T21:02:03Z Organic aerosols (OA) play an important role in climate change. However, very few calculations of global OA radiative forcing include secondary organic aerosol (SOA) or the light‐absorbing part of OA (brown carbon). Here we use a global model to assess the radiative forcing associated with the change in primary organic aerosol (POA) and SOA between present‐day and preindustrial conditions in both the atmosphere and the land snow/sea ice. Anthropogenic emissions are shown to substantially influence the SOA formation rate, causing it to increase by 29 Tg/yr (93%) since preindustrial times. We examine the effects of varying the refractive indices, size distributions for POA and SOA, and brown carbon fraction in SOA. The increase of SOA exerts a direct forcing ranging from −0.12 to −0.31 W m −2 and a first indirect forcing in warm‐phase clouds ranging from −0.22 to −0.29 W m −2 , with the range due to different assumed SOA size distributions and refractive indices. The increase of POA since preindustrial times causes a direct forcing varying from −0.06 to −0.11 W m −2 , when strongly and weakly absorbing refractive indices for brown carbon are used. The change in the total OA exerts a direct forcing ranging from −0.14 to −0.40 W m −2 . The atmospheric absorption from brown carbon ranges from +0.22 to +0.57 W m −2 , which corresponds to 27%~70% of the black carbon (BC) absorption predicted in the model. The radiative forcing of OA deposited in land snow and sea ice ranges from +0.0011 to +0.0031 W m −2 or as large as 24% of the forcing caused by BC in snow and ice simulated by the model. Key Points A fully explicit SOA formation model is used to determine SOA radiative forcing The direct radiative forcing by brown carbon in SOA is estimated The radiative forcing of OA in snow/ice is estimated for the first time Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/108060/1/jgrd51450.pdf Article in Journal/Newspaper Sea ice University of Michigan: Deep Blue Journal of Geophysical Research: Atmospheres 119 12 7453 7476