Convective‐scale responses of a large‐domain, modelled tropical environment to surface warming

This article explores the response of convective‐scale atmospheric characteristics to surface temperature through the lens of large‐domain, cloud‐system‐resolving model experiments run at radiative convective equilibrium. We note several features reminiscent of the response to surface warming in atm...

Full description

Bibliographic Details
Published in:Quarterly Journal of the Royal Meteorological Society
Main Authors: Igel, Matthew R., van den Heever, Susan C., Stephens, Graeme L., Posselt, Derek J.
Format: Article in Journal/Newspaper
Language:unknown
Published: John Wiley & Sons, Ltd 2014
Subjects:
Online Access:https://hdl.handle.net/2027.42/107584
https://doi.org/10.1002/qj.2230
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/107584
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic Convection
Climate
Cloud‐Resolving Models
Atmospheric
Oceanic and Space Sciences
Science
spellingShingle Convection
Climate
Cloud‐Resolving Models
Atmospheric
Oceanic and Space Sciences
Science
Igel, Matthew R.
van den Heever, Susan C.
Stephens, Graeme L.
Posselt, Derek J.
Convective‐scale responses of a large‐domain, modelled tropical environment to surface warming
topic_facet Convection
Climate
Cloud‐Resolving Models
Atmospheric
Oceanic and Space Sciences
Science
description This article explores the response of convective‐scale atmospheric characteristics to surface temperature through the lens of large‐domain, cloud‐system‐resolving model experiments run at radiative convective equilibrium. We note several features reminiscent of the response to surface warming in atmospheric general circulation models. These include an increase in the rain rate that is smaller than the modelled increase in precipitable water, a systematic decrease in sensible heating and an increase in clear‐sky cooling. However, in contrast to climate models, we note that tropospheric relative humidity increases and column‐integrated water vapour increases at the rate anticipated from the Clausius–Clapeyron relationship, but only when compared with the troposphere mean temperature rather than surface temperature. Also shown are results elucidating the changes in the vertically integrated water budget and the distribution of high precipitation rates shifting toward higher rates. Moist static energy distributions are analyzed and, from these, clouds are implicated in effecting the final equilibrium state of the atmosphere. The results indicate that, while there are aspects of the tropical equilibrium that are represented realistically in current general circulation model climate‐change experiments, there are potentially influential local interactions that are sufficiently important as to alter the mean response of the tropical water and energy balance to changes in sea‐surface temperature. Convection is shown to dictate the equilibrium state across all scales, including those unresolved in climate models, rather than only responding to surface‐induced changes. Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/107584/1/qj2230.pdf
format Article in Journal/Newspaper
author Igel, Matthew R.
van den Heever, Susan C.
Stephens, Graeme L.
Posselt, Derek J.
author_facet Igel, Matthew R.
van den Heever, Susan C.
Stephens, Graeme L.
Posselt, Derek J.
author_sort Igel, Matthew R.
title Convective‐scale responses of a large‐domain, modelled tropical environment to surface warming
title_short Convective‐scale responses of a large‐domain, modelled tropical environment to surface warming
title_full Convective‐scale responses of a large‐domain, modelled tropical environment to surface warming
title_fullStr Convective‐scale responses of a large‐domain, modelled tropical environment to surface warming
title_full_unstemmed Convective‐scale responses of a large‐domain, modelled tropical environment to surface warming
title_sort convective‐scale responses of a large‐domain, modelled tropical environment to surface warming
publisher John Wiley & Sons, Ltd
publishDate 2014
url https://hdl.handle.net/2027.42/107584
https://doi.org/10.1002/qj.2230
genre Arctic
genre_facet Arctic
op_relation Igel, Matthew R.; van den Heever, Susan C.; Stephens, Graeme L.; Posselt, Derek J. (2014). "Convective‐scale responses of a large‐domain, modelled tropical environment to surface warming." Quarterly Journal of the Royal Meteorological Society 140(681): 1333-1343.
0035-9009
1477-870X
https://hdl.handle.net/2027.42/107584
doi:10.1002/qj.2230
Quarterly Journal of the Royal Meteorological Society
Smagorinsky J. 1963. General circulation experiments with the primitive equations. Part I, the basic experiment. Mon. Weather Rev. 91: 99 – 164.
Seager R, Naomi N, Vecchi GA. 2010. Thermodynamic and dynamic mechanisms for large‐scale changes in the hydrological cycle in response to global warming. J. Climate 23: 4651 – 4668.
Sherwood SC, Ingram W, Tsushima Y, Satoh M, Roberts M, Vidale PL, O'Gorman PA. 2010. Relative humidity changes in a warmer climate. J. Geophys. Res. 115: D16119, DOI:10.1029/2009JD012585.
Soden BJ, Fu R. 1995. A satellite analysis of deep convection, upper‐tropospheric humidity, and the greenhouse‐effect. J. Climate 8: 2333 – 2351.
Soden BJ, Jackson DL, Ramaswamy V, Schwarzkopf MD, Huang XL. 2005. The radiative signature of upper tropospheric moistening. Science 310: 841 – 844.
Stephens GL, Ellis TD. 2008. Controls of global‐mean precipitation increases in global warming GCM experiments. J. Climate. 21: 6141 – 6155.
Stephens GL, Hu YX. 2010. Are climate‐related changes to the character of global‐mean precipitation predictable? Environ. Res. Lett. 5: 025209, DOI:10.1088/1748‐9326/5/2/025209.
Stephens GL, L'Ecuyer T, Forbes R, Gettlemen A, Golaz JC, Bodas‐Salcedo A, Suzuki K, Gabriel P, Haynes J. 2010. Dreary state of precipitation in models. J. Geophys. Res. 115: D24211, DOI:10.1029/2010JD014532.
Storer RL, van den Heever SC. 2013. Microphysical processes evident in aerosol forcing of tropical deep convection. J. Atmos. Sci. 70: 430 – 446.
Sugi M, Yoshimura J. 2004. A mechanism of tropical precipitation change due to CO 2 increase. J. Climate 17: 238 – 243.
Sugiyama M, Shiogama H, Emori S. 2010. Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models. Proc. Natl. Acad. Sci. USA 107: 571 – 575.
Tompkins AM. 2000. The impact of dimensionality on long‐term cloud‐resolving model simulations. Mon. Weather Rev. 128: 1521 – 1535.
Tompkins AM. 2001. Organization of tropical convection in low vertical wind shears: the role of water vapour. J. Atmos. Sci. 58: 529 – 545.
Trenberth KE, Fasullo J, Smith L. 2005. Trends and variability in column‐integrated atmospheric water vapour. Clim. Dyn. 24: 741 – 758.
Turner AG, Slingo JM. 2009. Uncertainties in future projections of extreme precipitation in the Indian monsoon region. Atmos. Sci. Lett. 10: 152 – 158, DOI:10.1002/asl.223.
Vecchi GA, Soden BJ. 2007. Global warming and the weakening of the tropical circulation. J. Climate 20: 4316 – 4340.
Walko RL, Band LE, Baron J, Kittel TGF, Lammers R, Lee TJ, Ojima D, Pielke RA, Taylor C, Tague C, Tremback CJ, Vidale PL. 2000. Coupled atmosphere–biophysics–hydrology models for environmental modelling. J. Appl. Meteorol. 39: 931 – 944.
Wentz FJ, Ricciardulli L, Hilburn K, Mears C. 2007. How much more rain will global warming bring? Science 317: 233 – 235.
Willett KM, Gillett NP, Jones PD, Thorne PW. 2007. Attribution of observed surface humidity changes to human influence. Nature 449: 710 – 713.
Yano J‐I, Guichard F, Lafore J‐P, Redelsperger J‐L, Bechtold P. 2004. Estimations of mass fluxes for cumulus parameterizations from high‐resolution spatial data. J. Atmos. Sci. 61: 829 – 842.
Zhang X, Zwiers FW, Hergel GC, Lambert FH, Gillet NP, Solomon S, Stott PA, Nozawa T. 2007. Detection of human influence on twentieth‐century precipitation trends. Nature 448: 461 – 465.
Bretherton CS, Blossey PN, Khairoutdinov M. 2005. An energy‐balance analysis of deep convective self‐aggregation above uniform SST. J. Atmos. Sci. 62: 4273 – 4292.
Chou C, Neelin JD. 2004. Mechanism of global warming impacts on regional tropical precipitation. J. Climate 17: 2688 – 2701.
Richter I, Xie SP. 2008. Muted precipitation increase in global warming simulations: a surface evaporation perspective. J. Geophys. Res. 113: D24118, DOI:10.1029/2008JD010561.
Riehl H, Malkus JS. 1958. On the heat balance in the equatorial trough zone. Geophysica 6: 505 – 535.
Allen MR, Ingram WJ. 2002. Constraints on future changes in climate and the hydrologic cycle. Nature 419: 224 – 232.
Bretherton CS, Peters ME, Back LE. 2004. Relationships between water vapour path and precipitation over the tropical oceans. J. Climate 17: 1517 – 1528.
Cotton WR, Pielke RA Sr, Walko RL, Liston GE, Tremback CJ, Jiang H, McAnelly RL, Harrington JY, Nicholls ME, Carrio GG, McFadden JP. 2003. RAMS 2001: current status and future directions. Meteorol. Atmos. Phys. 82: 5 – 29.
Grabowski WW, Moncrieff MW. 2001. Large‐scale organization of tropical convection in two‐dimensional explicit numerical simulations. Q. J. R. Meteorol. Soc. 127: 445 – 468.
Groisman PY, Knight RW, Easterling DR, Karl TR, Hegerl GC, Razuvaev VAN. 2005. Trends in intense precipitation in the climate record. J. Climate 18: 1326 – 1350.
Harrington JY. 1997. The effects of radiative and Microphysical processes on simulated warm and transition season arctic Stratus, Ph.D. Thesis, 298pp. Colorado State University: Fort Collins, CO.
Hartmann DL, Larson K. 2002. An important constraint on tropical cloud‐climate feedback. Geophys. Res. Lett. 29: 1951, DOI:10.1029/2002GL015835.
van den Heever SC. 2011. The impacts of aerosol indirect forcing on dynamical aspects of deep convection. Fall Meeting. American Geophysical Union: San Francisco, CA.
van den Heever SC, Stephens GL, Wood NB. 2011. Aerosol indirect effects on tropical convections characteristics under conditions of radiative–convective equilibrium. J. Atmos. Sci. 68: 699 – 718.
van den Heever SC. 2011. Aerosol indirect forcing on the precipitable water budget of the Tropics. The 91 st American Meteorological Society Annual Meeting, AMS, J14.2. 23‐27 January 2011, Seattle, WA.
Held IM, Hemler RS, Ramaswamy V. 1993. Radiative‐convective equilibrium with explicit two‐dimensional moist convection. J. Atmos. Sci. 50: 3909 – 3927.
Held IM, Soden BJ. 2000. Water‐vapour feedback and global warming. Ann. Rev. Energy Environ. 25: 441 – 475.
Held IM, Soden BJ. 2006. Robust responses of the hydrological cycle to global warming. J. Climate 19: 5686 – 5699.
Held IM, Zhao M. 2011. The response of tropical cyclone statistics to an increase in CO 2 with fixed sea surface temperature. J. Climate 24: 5353 – 5364.
Hill GE. 1974. Factors controlling the size and spacing of cumulus clouds as revealed by numerical experiments. J. Atmos. Sci. 31: 646.
Igel MR. 2011. ‘ A tropical radiation and cloud system feedback modulated by sea surface temperatures', Master's thesis, 79pp. Colorado State University: Fort Collins, CO.
Johnson RH, Rickenbach TM, Rutledge SA, Ciesielski PE, Schubert WH. 1999. Trimodal characteristics of tropical convection. J. Climate 12: 2397 – 2418.
Khairoutdinov M, Randall D, DeMott C. 2005. Simulations of the atmospheric general circulation using a cloud‐resolving model as a superparameterization of physical processes. J. Atmos. Sci. 62: 2136 – 2154.
Lilly DK. 1962. On the numerical simulation of buoyant convection. Tellus XIV: 148 – 172.
op_rights IndexNoFollow
op_doi https://doi.org/10.1002/qj.223010.1029/2009JD01258510.1029/2010JD01453210.1002/asl.22310.1029/2008JD01056110.1029/2002GL01583510.1029/2012GL05209310.1029/2007GL03302910.1029/2008JD01006410.1175/JAS‐D‐12‐076.1
container_title Quarterly Journal of the Royal Meteorological Society
container_volume 140
container_issue 681
container_start_page 1333
op_container_end_page 1343
_version_ 1810294154564993024
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/107584 2024-09-15T17:52:05+00:00 Convective‐scale responses of a large‐domain, modelled tropical environment to surface warming Igel, Matthew R. van den Heever, Susan C. Stephens, Graeme L. Posselt, Derek J. 2014-04 application/pdf https://hdl.handle.net/2027.42/107584 https://doi.org/10.1002/qj.2230 unknown John Wiley & Sons, Ltd Igel, Matthew R.; van den Heever, Susan C.; Stephens, Graeme L.; Posselt, Derek J. (2014). "Convective‐scale responses of a large‐domain, modelled tropical environment to surface warming." Quarterly Journal of the Royal Meteorological Society 140(681): 1333-1343. 0035-9009 1477-870X https://hdl.handle.net/2027.42/107584 doi:10.1002/qj.2230 Quarterly Journal of the Royal Meteorological Society Smagorinsky J. 1963. General circulation experiments with the primitive equations. Part I, the basic experiment. Mon. Weather Rev. 91: 99 – 164. Seager R, Naomi N, Vecchi GA. 2010. Thermodynamic and dynamic mechanisms for large‐scale changes in the hydrological cycle in response to global warming. J. Climate 23: 4651 – 4668. Sherwood SC, Ingram W, Tsushima Y, Satoh M, Roberts M, Vidale PL, O'Gorman PA. 2010. Relative humidity changes in a warmer climate. J. Geophys. Res. 115: D16119, DOI:10.1029/2009JD012585. Soden BJ, Fu R. 1995. A satellite analysis of deep convection, upper‐tropospheric humidity, and the greenhouse‐effect. J. Climate 8: 2333 – 2351. Soden BJ, Jackson DL, Ramaswamy V, Schwarzkopf MD, Huang XL. 2005. The radiative signature of upper tropospheric moistening. Science 310: 841 – 844. Stephens GL, Ellis TD. 2008. Controls of global‐mean precipitation increases in global warming GCM experiments. J. Climate. 21: 6141 – 6155. Stephens GL, Hu YX. 2010. Are climate‐related changes to the character of global‐mean precipitation predictable? Environ. Res. Lett. 5: 025209, DOI:10.1088/1748‐9326/5/2/025209. Stephens GL, L'Ecuyer T, Forbes R, Gettlemen A, Golaz JC, Bodas‐Salcedo A, Suzuki K, Gabriel P, Haynes J. 2010. Dreary state of precipitation in models. J. Geophys. Res. 115: D24211, DOI:10.1029/2010JD014532. Storer RL, van den Heever SC. 2013. Microphysical processes evident in aerosol forcing of tropical deep convection. J. Atmos. Sci. 70: 430 – 446. Sugi M, Yoshimura J. 2004. A mechanism of tropical precipitation change due to CO 2 increase. J. Climate 17: 238 – 243. Sugiyama M, Shiogama H, Emori S. 2010. Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models. Proc. Natl. Acad. Sci. USA 107: 571 – 575. Tompkins AM. 2000. The impact of dimensionality on long‐term cloud‐resolving model simulations. Mon. Weather Rev. 128: 1521 – 1535. Tompkins AM. 2001. Organization of tropical convection in low vertical wind shears: the role of water vapour. J. Atmos. Sci. 58: 529 – 545. Trenberth KE, Fasullo J, Smith L. 2005. Trends and variability in column‐integrated atmospheric water vapour. Clim. Dyn. 24: 741 – 758. Turner AG, Slingo JM. 2009. Uncertainties in future projections of extreme precipitation in the Indian monsoon region. Atmos. Sci. Lett. 10: 152 – 158, DOI:10.1002/asl.223. Vecchi GA, Soden BJ. 2007. Global warming and the weakening of the tropical circulation. J. Climate 20: 4316 – 4340. Walko RL, Band LE, Baron J, Kittel TGF, Lammers R, Lee TJ, Ojima D, Pielke RA, Taylor C, Tague C, Tremback CJ, Vidale PL. 2000. Coupled atmosphere–biophysics–hydrology models for environmental modelling. J. Appl. Meteorol. 39: 931 – 944. Wentz FJ, Ricciardulli L, Hilburn K, Mears C. 2007. How much more rain will global warming bring? Science 317: 233 – 235. Willett KM, Gillett NP, Jones PD, Thorne PW. 2007. Attribution of observed surface humidity changes to human influence. Nature 449: 710 – 713. Yano J‐I, Guichard F, Lafore J‐P, Redelsperger J‐L, Bechtold P. 2004. Estimations of mass fluxes for cumulus parameterizations from high‐resolution spatial data. J. Atmos. Sci. 61: 829 – 842. Zhang X, Zwiers FW, Hergel GC, Lambert FH, Gillet NP, Solomon S, Stott PA, Nozawa T. 2007. Detection of human influence on twentieth‐century precipitation trends. Nature 448: 461 – 465. Bretherton CS, Blossey PN, Khairoutdinov M. 2005. An energy‐balance analysis of deep convective self‐aggregation above uniform SST. J. Atmos. Sci. 62: 4273 – 4292. Chou C, Neelin JD. 2004. Mechanism of global warming impacts on regional tropical precipitation. J. Climate 17: 2688 – 2701. Richter I, Xie SP. 2008. Muted precipitation increase in global warming simulations: a surface evaporation perspective. J. Geophys. Res. 113: D24118, DOI:10.1029/2008JD010561. Riehl H, Malkus JS. 1958. On the heat balance in the equatorial trough zone. Geophysica 6: 505 – 535. Allen MR, Ingram WJ. 2002. Constraints on future changes in climate and the hydrologic cycle. Nature 419: 224 – 232. Bretherton CS, Peters ME, Back LE. 2004. Relationships between water vapour path and precipitation over the tropical oceans. J. Climate 17: 1517 – 1528. Cotton WR, Pielke RA Sr, Walko RL, Liston GE, Tremback CJ, Jiang H, McAnelly RL, Harrington JY, Nicholls ME, Carrio GG, McFadden JP. 2003. RAMS 2001: current status and future directions. Meteorol. Atmos. Phys. 82: 5 – 29. Grabowski WW, Moncrieff MW. 2001. Large‐scale organization of tropical convection in two‐dimensional explicit numerical simulations. Q. J. R. Meteorol. Soc. 127: 445 – 468. Groisman PY, Knight RW, Easterling DR, Karl TR, Hegerl GC, Razuvaev VAN. 2005. Trends in intense precipitation in the climate record. J. Climate 18: 1326 – 1350. Harrington JY. 1997. The effects of radiative and Microphysical processes on simulated warm and transition season arctic Stratus, Ph.D. Thesis, 298pp. Colorado State University: Fort Collins, CO. Hartmann DL, Larson K. 2002. An important constraint on tropical cloud‐climate feedback. Geophys. Res. Lett. 29: 1951, DOI:10.1029/2002GL015835. van den Heever SC. 2011. The impacts of aerosol indirect forcing on dynamical aspects of deep convection. Fall Meeting. American Geophysical Union: San Francisco, CA. van den Heever SC, Stephens GL, Wood NB. 2011. Aerosol indirect effects on tropical convections characteristics under conditions of radiative–convective equilibrium. J. Atmos. Sci. 68: 699 – 718. van den Heever SC. 2011. Aerosol indirect forcing on the precipitable water budget of the Tropics. The 91 st American Meteorological Society Annual Meeting, AMS, J14.2. 23‐27 January 2011, Seattle, WA. Held IM, Hemler RS, Ramaswamy V. 1993. Radiative‐convective equilibrium with explicit two‐dimensional moist convection. J. Atmos. Sci. 50: 3909 – 3927. Held IM, Soden BJ. 2000. Water‐vapour feedback and global warming. Ann. Rev. Energy Environ. 25: 441 – 475. Held IM, Soden BJ. 2006. Robust responses of the hydrological cycle to global warming. J. Climate 19: 5686 – 5699. Held IM, Zhao M. 2011. The response of tropical cyclone statistics to an increase in CO 2 with fixed sea surface temperature. J. Climate 24: 5353 – 5364. Hill GE. 1974. Factors controlling the size and spacing of cumulus clouds as revealed by numerical experiments. J. Atmos. Sci. 31: 646. Igel MR. 2011. ‘ A tropical radiation and cloud system feedback modulated by sea surface temperatures', Master's thesis, 79pp. Colorado State University: Fort Collins, CO. Johnson RH, Rickenbach TM, Rutledge SA, Ciesielski PE, Schubert WH. 1999. Trimodal characteristics of tropical convection. J. Climate 12: 2397 – 2418. Khairoutdinov M, Randall D, DeMott C. 2005. Simulations of the atmospheric general circulation using a cloud‐resolving model as a superparameterization of physical processes. J. Atmos. Sci. 62: 2136 – 2154. Lilly DK. 1962. On the numerical simulation of buoyant convection. Tellus XIV: 148 – 172. IndexNoFollow Convection Climate Cloud‐Resolving Models Atmospheric Oceanic and Space Sciences Science Article 2014 ftumdeepblue https://doi.org/10.1002/qj.223010.1029/2009JD01258510.1029/2010JD01453210.1002/asl.22310.1029/2008JD01056110.1029/2002GL01583510.1029/2012GL05209310.1029/2007GL03302910.1029/2008JD01006410.1175/JAS‐D‐12‐076.1 2024-07-30T04:06:07Z This article explores the response of convective‐scale atmospheric characteristics to surface temperature through the lens of large‐domain, cloud‐system‐resolving model experiments run at radiative convective equilibrium. We note several features reminiscent of the response to surface warming in atmospheric general circulation models. These include an increase in the rain rate that is smaller than the modelled increase in precipitable water, a systematic decrease in sensible heating and an increase in clear‐sky cooling. However, in contrast to climate models, we note that tropospheric relative humidity increases and column‐integrated water vapour increases at the rate anticipated from the Clausius–Clapeyron relationship, but only when compared with the troposphere mean temperature rather than surface temperature. Also shown are results elucidating the changes in the vertically integrated water budget and the distribution of high precipitation rates shifting toward higher rates. Moist static energy distributions are analyzed and, from these, clouds are implicated in effecting the final equilibrium state of the atmosphere. The results indicate that, while there are aspects of the tropical equilibrium that are represented realistically in current general circulation model climate‐change experiments, there are potentially influential local interactions that are sufficiently important as to alter the mean response of the tropical water and energy balance to changes in sea‐surface temperature. Convection is shown to dictate the equilibrium state across all scales, including those unresolved in climate models, rather than only responding to surface‐induced changes. Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/107584/1/qj2230.pdf Article in Journal/Newspaper Arctic University of Michigan: Deep Blue Quarterly Journal of the Royal Meteorological Society 140 681 1333 1343