Strong ionospheric field‐aligned currents for radial interplanetary magnetic fields

The present work has investigated the configuration of field‐aligned currents (FACs) during a long period of radial interplanetary magnetic field (IMF) on 19 May 2002 by using high‐resolution and precise vector magnetic field measurements of CHAMP satellite. During the interest period IMF B y and B...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Space Physics
Main Authors: Wang, Hui, Lühr, Hermann, Shue, Jih‐hong, Frey, Harald. U., Kervalishvili, Guram, Huang, Tao, Cao, Xue, Pi, Gilbert, Ridley, Aaron J.
Format: Article in Journal/Newspaper
Language:unknown
Published: AGU 2014
Subjects:
Online Access:https://hdl.handle.net/2027.42/107563
https://doi.org/10.1002/2014JA019951
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/107563
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic Field‐Aligned Currents
Radial Interplanetary Magnetic Field
Air Upwelling
Astronomy and Astrophysics
Science
spellingShingle Field‐Aligned Currents
Radial Interplanetary Magnetic Field
Air Upwelling
Astronomy and Astrophysics
Science
Wang, Hui
Lühr, Hermann
Shue, Jih‐hong
Frey, Harald. U.
Kervalishvili, Guram
Huang, Tao
Cao, Xue
Pi, Gilbert
Ridley, Aaron J.
Strong ionospheric field‐aligned currents for radial interplanetary magnetic fields
topic_facet Field‐Aligned Currents
Radial Interplanetary Magnetic Field
Air Upwelling
Astronomy and Astrophysics
Science
description The present work has investigated the configuration of field‐aligned currents (FACs) during a long period of radial interplanetary magnetic field (IMF) on 19 May 2002 by using high‐resolution and precise vector magnetic field measurements of CHAMP satellite. During the interest period IMF B y and B z are weakly positive and B x keeps pointing to the Earth for almost 10 h. The geomagnetic indices D s t is about −40 nT and AE about 100 nT on average. The cross polar cap potential calculated from Assimilative Mapping of Ionospheric Electrodynamics and derived from DMSP observations have average values of 10–20 kV. Obvious hemispheric differences are shown in the configurations of FACs on the dayside and nightside. At the south pole FACs diminish in intensity to magnitudes of about 0.1 μA/m 2 , the plasma convection maintains two‐cell flow pattern, and the thermospheric density is quite low. However, there are obvious activities in the northern cusp region. One pair of FACs with a downward leg toward the pole and upward leg on the equatorward side emerge in the northern cusp region, exhibiting opposite polarity to FACs typical for duskward IMF orientation. An obvious sunward plasma flow channel persists during the whole period. These ionospheric features might be manifestations of an efficient magnetic reconnection process occurring in the northern magnetospheric flanks at high latitude. The enhanced ionospheric current systems might deposit large amount of Joule heating into the thermosphere. The air densities in the cusp region get enhanced and subsequently propagate equatorward on the dayside. Although geomagnetic indices during the radial IMF indicate low‐level activity, the present study demonstrates that there are prevailing energy inputs from the magnetosphere to both the ionosphere and thermosphere in the northern polar cusp region. Key Points A pair of strong FACs emerges with opposite polarity to DPY FACs Obvious sunward plasma flow channel persists during the period Enhanced air densities are found in the ...
format Article in Journal/Newspaper
author Wang, Hui
Lühr, Hermann
Shue, Jih‐hong
Frey, Harald. U.
Kervalishvili, Guram
Huang, Tao
Cao, Xue
Pi, Gilbert
Ridley, Aaron J.
author_facet Wang, Hui
Lühr, Hermann
Shue, Jih‐hong
Frey, Harald. U.
Kervalishvili, Guram
Huang, Tao
Cao, Xue
Pi, Gilbert
Ridley, Aaron J.
author_sort Wang, Hui
title Strong ionospheric field‐aligned currents for radial interplanetary magnetic fields
title_short Strong ionospheric field‐aligned currents for radial interplanetary magnetic fields
title_full Strong ionospheric field‐aligned currents for radial interplanetary magnetic fields
title_fullStr Strong ionospheric field‐aligned currents for radial interplanetary magnetic fields
title_full_unstemmed Strong ionospheric field‐aligned currents for radial interplanetary magnetic fields
title_sort strong ionospheric field‐aligned currents for radial interplanetary magnetic fields
publisher AGU
publishDate 2014
url https://hdl.handle.net/2027.42/107563
https://doi.org/10.1002/2014JA019951
geographic South Pole
geographic_facet South Pole
genre South pole
genre_facet South pole
op_relation Wang, Hui; Lühr, Hermann
Shue, Jih‐hong
Frey, Harald. U.; Kervalishvili, Guram; Huang, Tao; Cao, Xue; Pi, Gilbert; Ridley, Aaron J. (2014). "Strong ionospheric fieldâ aligned currents for radial interplanetary magnetic fields." Journal of Geophysical Research: Space Physics 119(5): 3979-3995.
2169-9380
2169-9402
https://hdl.handle.net/2027.42/107563
doi:10.1002/2014JA019951
Journal of Geophysical Research: Space Physics
Ridley, A. J. ( 2005 ), A new formulation for the ionospheric cross polar cap potential including saturation effects, Ann. Geophys., 23, 3533 – 3547.
Ridley, A. J., T. I. Gombosi, and D. L. DeZeeuw ( 2004 ), Ionospheric control of the magnetosphere: Conductance, Ann. Geophys., 22, 567 – 584.
Robinson, R. M., R. R. Vondrak, K. Miller, T. Dabbs, and D. A. Hardy ( 1987 ), On calculating ionospheric conductances from the flux and energy of precipitating electrons, J. Geophys. Res., 92 ( A3 ), 2565 – 2569.
Russell, C. T., and M. Fleishman ( 2002 ), Joint control of region‐2 field‐aligned currents by the east‐west component of the interplanetary electric field and polar cap illumination, J. Atmos. Terr. Phys., 64, 1803 – 1808, doi:10.1016/S1364‐6826(02)00189‐X.
Russell, C. T., S. M. Petrinec, T. L. Zhang, P. Song, and H. Kawano ( 1997 ), The effect of foreshock on the motion of the dayside magnetopause, Geophys. Res. Lett., 24, 1439 – 1441, doi:10.1029/97GL01408.
Shue, J.‐H., P. T. Newell, K. Liou, C.‐I. Meng, and S. W. H. Cowley ( 2002 ), Interplanetary magnetic field B x asymmetry effect on auroral brightness, J. Geophys. Res., 107 ( A8 ), 1197, doi:10.1029/2001JA000229.
Shue, J.‐H., J.‐K. Chao, P. Song, J. P. McFadden, A. Suvorova, V. Angelopoulos, K. H. Glassmeier, and F. Plaschke ( 2009 ), Anomalous magnetosheath flows and distorted subsolar magnetopause for radial interplanetary magnetic fields, Geophys. Res. Lett., 36, L18112, doi:10.1029/2009GL039842.
Stauning, P. ( 2002 ), Field‐aligned ionospheric current systems observed from Magsat and Oersted satellites during northward IMF, Geophys. Res. Lett., 29 ( 15 ), 8005, doi:10.1029/2001GL013961.
Strangeway, R. J., C. T. Russell, C. W. Carlson, J. P. McFadden, R. E. Ergun, M. Temerin, D. M. Klumpar, W. K. Peterson, and T. E. Moore ( 2000 ), Cusp field‐aligned currents and ion outflows, J. Geophys. Res., 105, 21,129 – 21,141, doi:10.1029/2000JA900032.
Strangeway, R. J., R. E. Ergun, Y.‐J. Su, C. W. Carlson, and R. C. Elphic ( 2005 ), Factors controlling ionospheric outflows as observed at intermediate altitudes, J. Geophys. Res., 110, A03221, doi:10.1029/2004JA010829.
Suvorova, A. V., J.‐H. Shue, A. V. Dmitriev, D. G. Sibeck, J. P. McFadden, H. Hasegawa, K. Ackerson, K. Jelínek, J. Šafránková, and Z. Němeček ( 2010 ), Magnetopause expansions for quasi‐radial interplanetary magnetic field: THEMIS and Geotail observations, J. Geophys. Res., 115, A10216, doi:10.1029/2010JA015404.
Taguchi, S., M. Sugiura, J. D. Winningham, and J. A. Slavin ( 1993 ), Characterization of the IMF By‐dependent field‐aligned currents in the cleft region based on DE 2 observations, J. Geophys. Res., 98, 1393 – 1407.
Tang, B. B., C. Wang, and W. Y. Li ( 2013 ), The magnetosphere under the radial interplanetary magnetic field: A numerical study, J. Geophys. Res. Space Physics, 118, 7674 – 7682, doi:10.1002/2013JA019155.
Verigin, M., G. Kotova, A. Szabo, J. Slavin, T. Gombosi, K. Kabin, F. Shugaev, and A. Kalinchenko ( 2001 ), Wind observations of the terrestrial bow shock: 3‐D shape and motion, Earth Planets Space, 53, 1001 – 1009.
Wang, H., H. Lühr, and S. Y. Ma ( 2005 ), Solar zenith angle and merging electric field control of field‐aligned currents: A statistical study of the Southern Hemisphere, J. Geophys. Res., 110, A03306, doi:10.1029/2004JA010530.
Wang, H., H. Lühr, S. Y. Ma, J. Weygand, and R. M. Skoug ( 2006 ), Field‐aligned currents observed by CHAMP during the intense 2003 geomagnetic storm events, Ann. Geophys., 24, 311 – 324.
Wang, H., A. J. Ridley, and H. Lühr ( 2008a ), SWMF simulation of field‐aligned currents for a varying northward and duskward IMF with nonzero dipole tilt, Ann. Geophys., 26, 1461 – 1477, doi:10.5194/angeo‐26‐1461‐2008.
Wang, H., A. J. Ridley, H. Lühr, M. W. Liemohn, and S. Y. Ma ( 2008b ), Statistical study of the subauroral polarization stream: Its dependence on the cross‐polar cap potential and subauroral conductance, J. Geophys. Res., 113, A12311, doi:10.1029/2008JA013529.
Watanabe, M., T. Iijima, and F. J. Rich ( 1996 ), Synthesis models of dayside field‐aligned currents for strong interplanetary magnetic field By, J. Geophys. Res., 101, 13,303 – 13,320, doi:10.1029/96JA00482.
Watari, S., M. Vandas, and T. Watanabe ( 2005 ), Solar cycle variation of long‐duration radial interplanetary magnetic field events at 1 AU, J. Geophys. Res., 110, A12102, doi:10.1029/2005JA011165.
Weimer, D. R. ( 2001 ), Maps of ionospheric field‐aligned currents as a function of the interplanetary magnetic field derived from Dynamics Explorer 2 data, J. Geophys. Res., 106, 12,889 – 12,902, doi:10.1029/2000JA000295.
Wilder, F. D., S. Eriksson, H. Korth, J. B. H. Baker, M. R. Hairston, C. Heinselman, and B. J. Anderson ( 2013 ), Field‐aligned current reconfiguration and magnetospheric response to an impulse in the interplanetary magnetic field B Y component, Geophys. Res. Lett., 40, 2489 – 2494, doi:10.1002/grl.50505.
Wilhjelm, J. E., E. Friis‐Christensen, and T. A. Potemra ( 1978 ), The relationship between ionospheric and field‐aligned currents in the dayside cusp, J. Geophys. Res., 83, 5586 – 5592.
Wing, S., S.‐I. Ohtani, P. T. Newell, T. Higuchi, G. Ueno, and J. M. Weygand ( 2010 ), Dayside field‐aligned current source regions, J. Geophys. Res., 115, A12215, doi:10.1029/2010JA015837.
Xu, D., and M. G. Kivelson ( 1994 ), Polar cap field‐aligned currents for southward interplanetary magnetic fields, J. Geophys. Res., 99, 6067 – 6078, doi:10.1029/93JA02697.
Yamauchi, M., R. Lundin, and J. Woch ( 1993 ), The interplanetary magnetic field By effects on large‐scale field‐aligned currents near local noon—Contributions from cusp part and noncusp part, J. Geophys. Res., 98, 5761 – 5767.
Yang, Y. F., J. Y. Lu, J.‐S. Wang, Z. Peng, and L. Zhou ( 2013 ), Influence of interplanetary magnetic field and solar wind on auroral brightness in different regions, J. Geophys. Res. Space Physics, 118, 209 – 217, doi:10.1029/2012JA017727.
Li, W., D. Knipp, J. Lei, and J. Raeder ( 2011 ), The relation between dayside local Poynting flux enhancement and cusp reconnection, J. Geophys. Res., 116, A08301, doi:10.1029/2011JA016566.
Lin, Y., and X. Y. Wang ( 2005 ), Three‐dimensional global hybrid simulation of dayside dynamics associated with the quasi‐parallel bow shock, J. Geophys. Res., 110, A12216, doi:10.1029/2005JA011243.
Eriksson, S., M. R. Hairston, F. J. Rich, H. Korth, Y. Zhang, and B. J. Anderson ( 2009 ), High‐latitude ionosphere convection and Birkeland current response for the 15 May 2005 magnetic storm recovery phase, J. Geophys. Res., 113, A00A08, doi:10.1029/2008JA013139.
Erlandson, R. R., L. J. Zanetti, T. A. Potemra, P. F. Bythrow, and R. Lundin ( 1988 ), IMF By dependence of region 1 Birkeland currents near noon, J. Geophys. Res., 93, 9804 – 9814.
Fairfield, D. H., W. Baumjohann, G. Paschmann, H. Luehr, and D. G. Sibeck ( 1990 ), Upstream pressure variations associated with the bow shock and their effects on the magnetosphere, J. Geophys. Res., 95, 3773 – 3786, doi:10.1029/JA095iA04p03773.
Farrugia, C. J., A. Grocott, P. E. Sandholt, S. W. H. Cowley, Y. Miyoshi, F. J. Rich, V. K. Jordanova, R. B. Torbert, and A. Sharma ( 2007 ), The magnetosphere under weak solar wind forcing, Ann. Geophys., 25, 191 – 205, doi:10.5194/angeo‐25‐191‐2007.
Farrugia, C. J., et al. ( 2010 ), Magnetosheath for almost‐aligned solar wind magnetic field and flow vectors: Wind observations across the dawnside magnetosheath at X = −12 Re, J. Geophys. Res., 115, A08227, doi:10.1029/2009JA015128.
Feldshtein, I. I., and A. E. Levitin ( 1986 ), Solar wind control of electric fields and currents in the ionosphere, J. Geomagn. Geoelec., 38, 1143 – 1182.
Fontheim, E. G., L. H. Brace, and J. D. Winningham ( 1987 ), Properties of low‐energy electron precipitation in the cleft during periods of unusually high ambient electron temperatures, J. Geophys. Res., 92, 12,267 – 12,273, doi:10.1029/JA092iA11p12267.
Friis‐Christensen, E., Y. Kamide, A. D. Richmond, and S. Matsushita ( 1985 ), Interplanetary magnetic field control of high‐latitude electric fields and currents determined from Greenland magnetometer data, J. Geophys. Res., 90, 1325 – 1338.
Fujii, R., and T. Iijima ( 1987 ), Control of the ionospheric conductivities on large‐scale Birkeland current intensities under geomagnetic quiet conditions, J. Geophys. Res., 92, 4505 – 4513, doi:10.1029/JA092iA05p04505.
Fujii, R., H. Fukunishi, S. Kokubun, M. Sugiura, F. Tohyama, H. Hayakawa, K. Tsuruda, and T. Okada ( 1992 ), Field‐aligned current signatures during the March 13–14, 1989, great magnetic storm, J. Geophys. Res., 97, 10,703 – 10,715, doi:10.1029/92JA00171.
Gjerloev, J. W., S. Ohtani, T. Iijima, B. Anderson, J. Slavin, and G. Le ( 2011 ), Characteristics of the terrestrial field‐aligned current system, Ann. Geophys., 29, 1713 – 1729, doi:10.5194/angeo‐29‐1713‐2011.
Green, D. L., C. L. Waters, B. J. Anderson, and H. Korth ( 2009 ), Seasonal and interplanetary magnetic field dependence of the field‐aligned currents for both Northern and Southern Hemispheres, Ann. Geophys., 27, 1701 – 1715, doi:10.5194/angeo‐27‐1701‐2009.
Haraguchi, K., H. Kawano, K. Yumoto, S. Ohtani, T. Higuchi, and G. Ueno ( 2004 ), Ionospheric conductivity dependence of dayside region 0, 1, and 2 field aligned current systems, Ann. Geophys., 22, 2775 – 2783.
op_rights IndexNoFollow
op_doi https://doi.org/10.1002/2014JA01995110.1016/S1364‐6826(02)00189‐X10.1029/97GL0140810.1029/2001JA00022910.1029/2009GL03984210.1029/2001GL01396110.1029/2000JA90003210.1029/2004JA01082910.1029/2010JA01540410.1002/2013JA01915510.1029/2004JA01053010.5194/angeo
container_title Journal of Geophysical Research: Space Physics
container_volume 119
container_issue 5
container_start_page 3979
op_container_end_page 3995
_version_ 1774723623482818560
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/107563 2023-08-20T04:09:53+02:00 Strong ionospheric field‐aligned currents for radial interplanetary magnetic fields Wang, Hui Lühr, Hermann Shue, Jih‐hong Frey, Harald. U. Kervalishvili, Guram Huang, Tao Cao, Xue Pi, Gilbert Ridley, Aaron J. 2014-05 application/pdf https://hdl.handle.net/2027.42/107563 https://doi.org/10.1002/2014JA019951 unknown AGU Wiley Periodicals, Inc. Wang, Hui; Lühr, Hermann Shue, Jih‐hong Frey, Harald. U.; Kervalishvili, Guram; Huang, Tao; Cao, Xue; Pi, Gilbert; Ridley, Aaron J. (2014). "Strong ionospheric fieldâ aligned currents for radial interplanetary magnetic fields." Journal of Geophysical Research: Space Physics 119(5): 3979-3995. 2169-9380 2169-9402 https://hdl.handle.net/2027.42/107563 doi:10.1002/2014JA019951 Journal of Geophysical Research: Space Physics Ridley, A. J. ( 2005 ), A new formulation for the ionospheric cross polar cap potential including saturation effects, Ann. Geophys., 23, 3533 – 3547. Ridley, A. J., T. I. Gombosi, and D. L. DeZeeuw ( 2004 ), Ionospheric control of the magnetosphere: Conductance, Ann. Geophys., 22, 567 – 584. Robinson, R. M., R. R. Vondrak, K. Miller, T. Dabbs, and D. A. Hardy ( 1987 ), On calculating ionospheric conductances from the flux and energy of precipitating electrons, J. Geophys. Res., 92 ( A3 ), 2565 – 2569. Russell, C. T., and M. Fleishman ( 2002 ), Joint control of region‐2 field‐aligned currents by the east‐west component of the interplanetary electric field and polar cap illumination, J. Atmos. Terr. Phys., 64, 1803 – 1808, doi:10.1016/S1364‐6826(02)00189‐X. Russell, C. T., S. M. Petrinec, T. L. Zhang, P. Song, and H. Kawano ( 1997 ), The effect of foreshock on the motion of the dayside magnetopause, Geophys. Res. Lett., 24, 1439 – 1441, doi:10.1029/97GL01408. Shue, J.‐H., P. T. Newell, K. Liou, C.‐I. Meng, and S. W. H. Cowley ( 2002 ), Interplanetary magnetic field B x asymmetry effect on auroral brightness, J. Geophys. Res., 107 ( A8 ), 1197, doi:10.1029/2001JA000229. Shue, J.‐H., J.‐K. Chao, P. Song, J. P. McFadden, A. Suvorova, V. Angelopoulos, K. H. Glassmeier, and F. Plaschke ( 2009 ), Anomalous magnetosheath flows and distorted subsolar magnetopause for radial interplanetary magnetic fields, Geophys. Res. Lett., 36, L18112, doi:10.1029/2009GL039842. Stauning, P. ( 2002 ), Field‐aligned ionospheric current systems observed from Magsat and Oersted satellites during northward IMF, Geophys. Res. Lett., 29 ( 15 ), 8005, doi:10.1029/2001GL013961. Strangeway, R. J., C. T. Russell, C. W. Carlson, J. P. McFadden, R. E. Ergun, M. Temerin, D. M. Klumpar, W. K. Peterson, and T. E. Moore ( 2000 ), Cusp field‐aligned currents and ion outflows, J. Geophys. Res., 105, 21,129 – 21,141, doi:10.1029/2000JA900032. Strangeway, R. J., R. E. Ergun, Y.‐J. Su, C. W. Carlson, and R. C. Elphic ( 2005 ), Factors controlling ionospheric outflows as observed at intermediate altitudes, J. Geophys. Res., 110, A03221, doi:10.1029/2004JA010829. Suvorova, A. V., J.‐H. Shue, A. V. Dmitriev, D. G. Sibeck, J. P. McFadden, H. Hasegawa, K. Ackerson, K. Jelínek, J. Šafránková, and Z. Němeček ( 2010 ), Magnetopause expansions for quasi‐radial interplanetary magnetic field: THEMIS and Geotail observations, J. Geophys. Res., 115, A10216, doi:10.1029/2010JA015404. Taguchi, S., M. Sugiura, J. D. Winningham, and J. A. Slavin ( 1993 ), Characterization of the IMF By‐dependent field‐aligned currents in the cleft region based on DE 2 observations, J. Geophys. Res., 98, 1393 – 1407. Tang, B. B., C. Wang, and W. Y. Li ( 2013 ), The magnetosphere under the radial interplanetary magnetic field: A numerical study, J. Geophys. Res. Space Physics, 118, 7674 – 7682, doi:10.1002/2013JA019155. Verigin, M., G. Kotova, A. Szabo, J. Slavin, T. Gombosi, K. Kabin, F. Shugaev, and A. Kalinchenko ( 2001 ), Wind observations of the terrestrial bow shock: 3‐D shape and motion, Earth Planets Space, 53, 1001 – 1009. Wang, H., H. Lühr, and S. Y. Ma ( 2005 ), Solar zenith angle and merging electric field control of field‐aligned currents: A statistical study of the Southern Hemisphere, J. Geophys. Res., 110, A03306, doi:10.1029/2004JA010530. Wang, H., H. Lühr, S. Y. Ma, J. Weygand, and R. M. Skoug ( 2006 ), Field‐aligned currents observed by CHAMP during the intense 2003 geomagnetic storm events, Ann. Geophys., 24, 311 – 324. Wang, H., A. J. Ridley, and H. Lühr ( 2008a ), SWMF simulation of field‐aligned currents for a varying northward and duskward IMF with nonzero dipole tilt, Ann. Geophys., 26, 1461 – 1477, doi:10.5194/angeo‐26‐1461‐2008. Wang, H., A. J. Ridley, H. Lühr, M. W. Liemohn, and S. Y. Ma ( 2008b ), Statistical study of the subauroral polarization stream: Its dependence on the cross‐polar cap potential and subauroral conductance, J. Geophys. Res., 113, A12311, doi:10.1029/2008JA013529. Watanabe, M., T. Iijima, and F. J. Rich ( 1996 ), Synthesis models of dayside field‐aligned currents for strong interplanetary magnetic field By, J. Geophys. Res., 101, 13,303 – 13,320, doi:10.1029/96JA00482. Watari, S., M. Vandas, and T. Watanabe ( 2005 ), Solar cycle variation of long‐duration radial interplanetary magnetic field events at 1 AU, J. Geophys. Res., 110, A12102, doi:10.1029/2005JA011165. Weimer, D. R. ( 2001 ), Maps of ionospheric field‐aligned currents as a function of the interplanetary magnetic field derived from Dynamics Explorer 2 data, J. Geophys. Res., 106, 12,889 – 12,902, doi:10.1029/2000JA000295. Wilder, F. D., S. Eriksson, H. Korth, J. B. H. Baker, M. R. Hairston, C. Heinselman, and B. J. Anderson ( 2013 ), Field‐aligned current reconfiguration and magnetospheric response to an impulse in the interplanetary magnetic field B Y component, Geophys. Res. Lett., 40, 2489 – 2494, doi:10.1002/grl.50505. Wilhjelm, J. E., E. Friis‐Christensen, and T. A. Potemra ( 1978 ), The relationship between ionospheric and field‐aligned currents in the dayside cusp, J. Geophys. Res., 83, 5586 – 5592. Wing, S., S.‐I. Ohtani, P. T. Newell, T. Higuchi, G. Ueno, and J. M. Weygand ( 2010 ), Dayside field‐aligned current source regions, J. Geophys. Res., 115, A12215, doi:10.1029/2010JA015837. Xu, D., and M. G. Kivelson ( 1994 ), Polar cap field‐aligned currents for southward interplanetary magnetic fields, J. Geophys. Res., 99, 6067 – 6078, doi:10.1029/93JA02697. Yamauchi, M., R. Lundin, and J. Woch ( 1993 ), The interplanetary magnetic field By effects on large‐scale field‐aligned currents near local noon—Contributions from cusp part and noncusp part, J. Geophys. Res., 98, 5761 – 5767. Yang, Y. F., J. Y. Lu, J.‐S. Wang, Z. Peng, and L. Zhou ( 2013 ), Influence of interplanetary magnetic field and solar wind on auroral brightness in different regions, J. Geophys. Res. Space Physics, 118, 209 – 217, doi:10.1029/2012JA017727. Li, W., D. Knipp, J. Lei, and J. Raeder ( 2011 ), The relation between dayside local Poynting flux enhancement and cusp reconnection, J. Geophys. Res., 116, A08301, doi:10.1029/2011JA016566. Lin, Y., and X. Y. Wang ( 2005 ), Three‐dimensional global hybrid simulation of dayside dynamics associated with the quasi‐parallel bow shock, J. Geophys. Res., 110, A12216, doi:10.1029/2005JA011243. Eriksson, S., M. R. Hairston, F. J. Rich, H. Korth, Y. Zhang, and B. J. Anderson ( 2009 ), High‐latitude ionosphere convection and Birkeland current response for the 15 May 2005 magnetic storm recovery phase, J. Geophys. Res., 113, A00A08, doi:10.1029/2008JA013139. Erlandson, R. R., L. J. Zanetti, T. A. Potemra, P. F. Bythrow, and R. Lundin ( 1988 ), IMF By dependence of region 1 Birkeland currents near noon, J. Geophys. Res., 93, 9804 – 9814. Fairfield, D. H., W. Baumjohann, G. Paschmann, H. Luehr, and D. G. Sibeck ( 1990 ), Upstream pressure variations associated with the bow shock and their effects on the magnetosphere, J. Geophys. Res., 95, 3773 – 3786, doi:10.1029/JA095iA04p03773. Farrugia, C. J., A. Grocott, P. E. Sandholt, S. W. H. Cowley, Y. Miyoshi, F. J. Rich, V. K. Jordanova, R. B. Torbert, and A. Sharma ( 2007 ), The magnetosphere under weak solar wind forcing, Ann. Geophys., 25, 191 – 205, doi:10.5194/angeo‐25‐191‐2007. Farrugia, C. J., et al. ( 2010 ), Magnetosheath for almost‐aligned solar wind magnetic field and flow vectors: Wind observations across the dawnside magnetosheath at X = −12 Re, J. Geophys. Res., 115, A08227, doi:10.1029/2009JA015128. Feldshtein, I. I., and A. E. Levitin ( 1986 ), Solar wind control of electric fields and currents in the ionosphere, J. Geomagn. Geoelec., 38, 1143 – 1182. Fontheim, E. G., L. H. Brace, and J. D. Winningham ( 1987 ), Properties of low‐energy electron precipitation in the cleft during periods of unusually high ambient electron temperatures, J. Geophys. Res., 92, 12,267 – 12,273, doi:10.1029/JA092iA11p12267. Friis‐Christensen, E., Y. Kamide, A. D. Richmond, and S. Matsushita ( 1985 ), Interplanetary magnetic field control of high‐latitude electric fields and currents determined from Greenland magnetometer data, J. Geophys. Res., 90, 1325 – 1338. Fujii, R., and T. Iijima ( 1987 ), Control of the ionospheric conductivities on large‐scale Birkeland current intensities under geomagnetic quiet conditions, J. Geophys. Res., 92, 4505 – 4513, doi:10.1029/JA092iA05p04505. Fujii, R., H. Fukunishi, S. Kokubun, M. Sugiura, F. Tohyama, H. Hayakawa, K. Tsuruda, and T. Okada ( 1992 ), Field‐aligned current signatures during the March 13–14, 1989, great magnetic storm, J. Geophys. Res., 97, 10,703 – 10,715, doi:10.1029/92JA00171. Gjerloev, J. W., S. Ohtani, T. Iijima, B. Anderson, J. Slavin, and G. Le ( 2011 ), Characteristics of the terrestrial field‐aligned current system, Ann. Geophys., 29, 1713 – 1729, doi:10.5194/angeo‐29‐1713‐2011. Green, D. L., C. L. Waters, B. J. Anderson, and H. Korth ( 2009 ), Seasonal and interplanetary magnetic field dependence of the field‐aligned currents for both Northern and Southern Hemispheres, Ann. Geophys., 27, 1701 – 1715, doi:10.5194/angeo‐27‐1701‐2009. Haraguchi, K., H. Kawano, K. Yumoto, S. Ohtani, T. Higuchi, and G. Ueno ( 2004 ), Ionospheric conductivity dependence of dayside region 0, 1, and 2 field aligned current systems, Ann. Geophys., 22, 2775 – 2783. IndexNoFollow Field‐Aligned Currents Radial Interplanetary Magnetic Field Air Upwelling Astronomy and Astrophysics Science Article 2014 ftumdeepblue https://doi.org/10.1002/2014JA01995110.1016/S1364‐6826(02)00189‐X10.1029/97GL0140810.1029/2001JA00022910.1029/2009GL03984210.1029/2001GL01396110.1029/2000JA90003210.1029/2004JA01082910.1029/2010JA01540410.1002/2013JA01915510.1029/2004JA01053010.5194/angeo 2023-07-31T21:21:54Z The present work has investigated the configuration of field‐aligned currents (FACs) during a long period of radial interplanetary magnetic field (IMF) on 19 May 2002 by using high‐resolution and precise vector magnetic field measurements of CHAMP satellite. During the interest period IMF B y and B z are weakly positive and B x keeps pointing to the Earth for almost 10 h. The geomagnetic indices D s t is about −40 nT and AE about 100 nT on average. The cross polar cap potential calculated from Assimilative Mapping of Ionospheric Electrodynamics and derived from DMSP observations have average values of 10–20 kV. Obvious hemispheric differences are shown in the configurations of FACs on the dayside and nightside. At the south pole FACs diminish in intensity to magnitudes of about 0.1 μA/m 2 , the plasma convection maintains two‐cell flow pattern, and the thermospheric density is quite low. However, there are obvious activities in the northern cusp region. One pair of FACs with a downward leg toward the pole and upward leg on the equatorward side emerge in the northern cusp region, exhibiting opposite polarity to FACs typical for duskward IMF orientation. An obvious sunward plasma flow channel persists during the whole period. These ionospheric features might be manifestations of an efficient magnetic reconnection process occurring in the northern magnetospheric flanks at high latitude. The enhanced ionospheric current systems might deposit large amount of Joule heating into the thermosphere. The air densities in the cusp region get enhanced and subsequently propagate equatorward on the dayside. Although geomagnetic indices during the radial IMF indicate low‐level activity, the present study demonstrates that there are prevailing energy inputs from the magnetosphere to both the ionosphere and thermosphere in the northern polar cusp region. Key Points A pair of strong FACs emerges with opposite polarity to DPY FACs Obvious sunward plasma flow channel persists during the period Enhanced air densities are found in the ... Article in Journal/Newspaper South pole University of Michigan: Deep Blue South Pole Journal of Geophysical Research: Space Physics 119 5 3979 3995