Processes controlling Southern Ocean shortwave climate feedbacks in CESM

A climate model (Community Earth System Model with the Community Atmosphere Model version 5 (CESM‐CAM5)) is used to identify processes controlling Southern Ocean (30–70°S) absorbed shortwave radiation (ASR). In response to 21st century Representative Concentration Pathway 8.5 forcing, both sea ice l...

Full description

Bibliographic Details
Published in:Geophysical Research Letters
Main Authors: Kay, J. E., Medeiros, B., Hwang, Y.‐t., Gettelman, A., Perket, J., Flanner, M. G.
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley Periodicals, Inc. 2014
Subjects:
Jet
Online Access:https://hdl.handle.net/2027.42/106751
https://doi.org/10.1002/2013GL058315
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/106751
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic Southern Ocean
Climate Feedbacks
Shortwave Radiation
Jet
Sea Ice
Clouds
Geological Sciences
Science
spellingShingle Southern Ocean
Climate Feedbacks
Shortwave Radiation
Jet
Sea Ice
Clouds
Geological Sciences
Science
Kay, J. E.
Medeiros, B.
Hwang, Y.‐t.
Gettelman, A.
Perket, J.
Flanner, M. G.
Processes controlling Southern Ocean shortwave climate feedbacks in CESM
topic_facet Southern Ocean
Climate Feedbacks
Shortwave Radiation
Jet
Sea Ice
Clouds
Geological Sciences
Science
description A climate model (Community Earth System Model with the Community Atmosphere Model version 5 (CESM‐CAM5)) is used to identify processes controlling Southern Ocean (30–70°S) absorbed shortwave radiation (ASR). In response to 21st century Representative Concentration Pathway 8.5 forcing, both sea ice loss (2.6 W m −2 ) and cloud changes (1.2 W m −2 ) enhance ASR, but their relative importance depends on location and season. Poleward of ~55°S, surface albedo reductions and increased cloud liquid water content (LWC) have competing effects on ASR changes. Equatorward of ~55°S, decreased LWC enhances ASR. The 21st century cloud LWC changes result from warming and near‐surface stability changes but appear unrelated to a small (1°) poleward shift in the eddy‐driven jet. In fact, the 21st century ASR changes are 5 times greater than ASR changes resulting from large (5°) naturally occurring jet latitude variability. More broadly, these results suggest that thermodynamics (warming and near‐surface stability), not poleward jet shifts, control 21st century Southern Ocean shortwave climate feedbacks. Key Points Sea ice loss (2.6 W m−2) and clouds (1.2 W m−2) explain RCP8.5 absorbed SW changes Southern Ocean radiatively important clouds (RIC) are low‐level liquid clouds RIC respond primarily to warming and stability changes, not poleward jet shifts Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/106751/1/grl51226.pdf
format Article in Journal/Newspaper
author Kay, J. E.
Medeiros, B.
Hwang, Y.‐t.
Gettelman, A.
Perket, J.
Flanner, M. G.
author_facet Kay, J. E.
Medeiros, B.
Hwang, Y.‐t.
Gettelman, A.
Perket, J.
Flanner, M. G.
author_sort Kay, J. E.
title Processes controlling Southern Ocean shortwave climate feedbacks in CESM
title_short Processes controlling Southern Ocean shortwave climate feedbacks in CESM
title_full Processes controlling Southern Ocean shortwave climate feedbacks in CESM
title_fullStr Processes controlling Southern Ocean shortwave climate feedbacks in CESM
title_full_unstemmed Processes controlling Southern Ocean shortwave climate feedbacks in CESM
title_sort processes controlling southern ocean shortwave climate feedbacks in cesm
publisher Wiley Periodicals, Inc.
publishDate 2014
url https://hdl.handle.net/2027.42/106751
https://doi.org/10.1002/2013GL058315
geographic Southern Ocean
geographic_facet Southern Ocean
genre Sea ice
Southern Ocean
genre_facet Sea ice
Southern Ocean
op_relation Kay, J. E.; Medeiros, B.; Hwang, Y.‐t.
Gettelman, A.; Perket, J.; Flanner, M. G. (2014). "Processes controlling Southern Ocean shortwave climate feedbacks in CESM." Geophysical Research Letters 41(2): 616-622.
0094-8276
1944-8007
https://hdl.handle.net/2027.42/106751
doi:10.1002/2013GL058315
Geophysical Research Letters
Loeb, N. G., et al. ( 2009 ), Toward optimal closure of the Earth's top‐of‐atmosphere radiation budget, J. Clim., 22, 748 – 766, doi:10.1175/2008JCLI2637.1.
Bodas‐Salcedo, A., et al. ( 2013 ), Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models, J. Clim., doi:10.1175/JCLI‐D‐13‐00169.1, in press.
Ceppi, P., Y.‐T. Hwang, D. M. W. Frierson, and D. L. Hartmann ( 2012 ), Southern Hemisphere jet latitude biases in CMIP5 models linked to shortwave cloud forcing, Geophys. Res. Lett., 39, L19708, doi:10.1029/2012GL053115.
Fitzpatrick, M. F., and S. G. Warren ( 2007 ), The relative importance of clouds and sea ice for the solar energy budget of the southern ocean, J. Clim., 20, 941 – 954, doi:10.1175/JCLI4040.1.
Flanner, M. G., K. M. Shell, M. Barlage, D. K. Perovich, and M. A. Tschudi ( 2011 ), Radiative forcing and albedo feedbacks from the Northern Hemisphere cryosphere between 1979 and 2008, Nat. Geosci., 4, 151 – 155, doi:10.1038/ngeo1062.
Gent, P. R., et al. ( 2011 ), The Community Climate System Model Version 4, J. Clim., 24, 4973 – 4991, doi:10.1175/2011JCLI4083.1.
Gettelman, A., J. E. Kay, and K. M. Shell ( 2012 ), The evolution of climate sensitivity and climate feedbackss in the Community Atmosphere Model, J. Clim., 25, 1453 – 1469, doi:10.1175/JCLI‐D‐11‐00197.1.
Grise, K. M., L. M. Polvani, G. Tselioudis, Y. Wu, and M. D. Zelinka ( 2013 ), The ozone hole indirect effect: Cloud‐radiative anomalies accompanying the poleward shift of the eddy‐driven jet in the Southern Hemisphere, Geophys. Res. Lett., 40, 3688 – 3692, doi:10.1002/grl.50675.
Hall, A., and M. Visbeck ( 2002 ), Synchronous variability in the southern hemisphere atmosphere, sea ice, and ocean resulting from the annular mode, J. Clim., 15, 3043 – 3057.
Haynes, J. M., C. Jakob, W. B. Rossow, G. Tselioudis, and J. Brown ( 2011 ), Major characteristics of Southern Ocean cloud regimes and their effects on the energy budget, J. Clim., 24, 5061 – 5080, doi:10.1175/2011JCLI4052.1.
Hurrell, J., et al. ( 2013 ), The Community Earth System Model: A framework for collaborative research, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS‐D‐12‐00121.1.
Hwang, Y.‐T., and D. M. W. Frierson ( 2010 ), Increasing atmospheric poleward energy transport with global warming, Geophys. Res. Lett., 37, L24807, doi:10.1029/2010GL045440.
Hwang, Y.‐T., and D. M. W. Frierson ( 2013 ), A link between the double intertropical convergence zone problem and cloud biases over the Southern Ocean, Proc. Natl. Acad. Sci., doi:10.1073/pnas.1213302110.
Kay, J. E., et al. ( 2012 ), Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators, J. Clim., 25, 5190 – 5207, doi:10.1175/JCLI‐D‐11‐00469.1.
Kidston, J., and E. P. Gerber ( 2010 ), Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology, Geophys. Res. Lett., 37, L09708, doi:10.1029/2010GL042873.
Lamarque, J.‐F., et al. ( 2011 ), Global and regional evolution of short‐lived radiatively active gases and aerosols in the Representative Concentration Pathways, Clim. Change, doi:10.1007/s10584‐011‐0155‐0.
Lefebvre, W., and H. Goosse ( 2008 ), Analysis of the projected regional sea‐ice changes in the Southern Ocean during the twenty‐first century, Clim. Dyn., 30, 59 – 76, doi:10.1007/s00382‐007‐0273‐6.
Meinshausen, M., et al. ( 2011 ), The RCP greenhouse gas concentrations and their extension from 1765 to 2300, Clim. Change, (Special Issue), doi:10.1007/s10584‐011‐0156‐z.
Thompson, D. W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly ( 2011 ), Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change, Nat. Geosci., 4, 741 – 749, doi:10.1038/ngeo1296.
Trenberth, K. E., and J. T. Fasullo ( 2010 ), Simulation of present‐day and twenty‐first‐century energy budgets of the Southern Oceans, J. Clim., 23, 440 – 454, doi:10.1175/2009JCLI3152.1.
Tsushima, Y., S. Emori, T. Ogura, M. Kimoto, M. J. Webb, K. D. Williams, M. A. Ringer, B. J. Soden, B. Li, and N. Andronova ( 2006 ), Importance of the mixed‐phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: A multi‐model study, Clim. Dyn., 27, 113 – 126, doi:10.1007/s00382‐006‐0127‐7.
Vial, J., J.‐L. Dufresne, and S. Bony ( 2013 ), On the interpretation of inter‐model spread in CMIP5 climate sensitivity estimates, Clim. Dyn., 1–24, doi:10.1007/s00382‐013‐1725‐9.
Williams, K. D., et al. ( 2013 ), The Transpose‐AMIP II experiment and its application to the understanding of Southern Ocean cloud biases in climate models, J. Clim., 26, 3258 – 3274, doi:10.1175/JCLI‐D‐12‐00429.1.
Yin, J. H. ( 2005 ), A consistent poleward shift of the storm tracks in simulations of 21st century climate, Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684.
Zelinka, M. D., S. A. Klein, K. E. Taylor, T. Andrews, M. J. Webb, J. M. Gregory, and P. M. Forster ( 2013 ), Contributions of different cloud types to feedbacks and rapid adjustments in CMIP5, J. Clim., 26, 5007 – 5027, doi:10.1175/JCLI‐D‐12‐00555.1.
Barnes, E. A., and L. M. Polvani ( 2013 ), Response of the midlatitude jets and of their variability to increased greenhouse gases in the CMIP5 models, J. Clim., 26, 7117 – 7135, doi:10.1175/JCLI‐D‐12‐00536.1.
Bender, F. A.‐M., V. Ramanathan, and G. Tselioudis ( 2011 ), Changes in extratropical storm track cloudiness 1983–2008: Observational support for a poleward shift, Clim. Dyn., 38, 2037 – 2053, doi:10.1007/s00382‐011‐1065‐6.
op_rights IndexNoFollow
op_doi https://doi.org/10.1002/2013GL05831510.1175/2008JCLI2637.110.1175/JCLI‐D‐13‐00169.110.1029/2012GL05311510.1175/JCLI4040.110.1038/ngeo106210.1175/2011JCLI4083.110.1175/JCLI‐D‐11‐00197.110.1002/grl.5067510.1175/2011JCLI4052.110.1175/BAMS‐D‐12‐00121.110.1029
container_title Geophysical Research Letters
container_volume 41
container_issue 2
container_start_page 616
op_container_end_page 622
_version_ 1774723356783804416
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/106751 2023-08-20T04:09:43+02:00 Processes controlling Southern Ocean shortwave climate feedbacks in CESM Kay, J. E. Medeiros, B. Hwang, Y.‐t. Gettelman, A. Perket, J. Flanner, M. G. 2014-01-28 application/pdf https://hdl.handle.net/2027.42/106751 https://doi.org/10.1002/2013GL058315 unknown Wiley Periodicals, Inc. Kay, J. E.; Medeiros, B.; Hwang, Y.‐t. Gettelman, A.; Perket, J.; Flanner, M. G. (2014). "Processes controlling Southern Ocean shortwave climate feedbacks in CESM." Geophysical Research Letters 41(2): 616-622. 0094-8276 1944-8007 https://hdl.handle.net/2027.42/106751 doi:10.1002/2013GL058315 Geophysical Research Letters Loeb, N. G., et al. ( 2009 ), Toward optimal closure of the Earth's top‐of‐atmosphere radiation budget, J. Clim., 22, 748 – 766, doi:10.1175/2008JCLI2637.1. Bodas‐Salcedo, A., et al. ( 2013 ), Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models, J. Clim., doi:10.1175/JCLI‐D‐13‐00169.1, in press. Ceppi, P., Y.‐T. Hwang, D. M. W. Frierson, and D. L. Hartmann ( 2012 ), Southern Hemisphere jet latitude biases in CMIP5 models linked to shortwave cloud forcing, Geophys. Res. Lett., 39, L19708, doi:10.1029/2012GL053115. Fitzpatrick, M. F., and S. G. Warren ( 2007 ), The relative importance of clouds and sea ice for the solar energy budget of the southern ocean, J. Clim., 20, 941 – 954, doi:10.1175/JCLI4040.1. Flanner, M. G., K. M. Shell, M. Barlage, D. K. Perovich, and M. A. Tschudi ( 2011 ), Radiative forcing and albedo feedbacks from the Northern Hemisphere cryosphere between 1979 and 2008, Nat. Geosci., 4, 151 – 155, doi:10.1038/ngeo1062. Gent, P. R., et al. ( 2011 ), The Community Climate System Model Version 4, J. Clim., 24, 4973 – 4991, doi:10.1175/2011JCLI4083.1. Gettelman, A., J. E. Kay, and K. M. Shell ( 2012 ), The evolution of climate sensitivity and climate feedbackss in the Community Atmosphere Model, J. Clim., 25, 1453 – 1469, doi:10.1175/JCLI‐D‐11‐00197.1. Grise, K. M., L. M. Polvani, G. Tselioudis, Y. Wu, and M. D. Zelinka ( 2013 ), The ozone hole indirect effect: Cloud‐radiative anomalies accompanying the poleward shift of the eddy‐driven jet in the Southern Hemisphere, Geophys. Res. Lett., 40, 3688 – 3692, doi:10.1002/grl.50675. Hall, A., and M. Visbeck ( 2002 ), Synchronous variability in the southern hemisphere atmosphere, sea ice, and ocean resulting from the annular mode, J. Clim., 15, 3043 – 3057. Haynes, J. M., C. Jakob, W. B. Rossow, G. Tselioudis, and J. Brown ( 2011 ), Major characteristics of Southern Ocean cloud regimes and their effects on the energy budget, J. Clim., 24, 5061 – 5080, doi:10.1175/2011JCLI4052.1. Hurrell, J., et al. ( 2013 ), The Community Earth System Model: A framework for collaborative research, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS‐D‐12‐00121.1. Hwang, Y.‐T., and D. M. W. Frierson ( 2010 ), Increasing atmospheric poleward energy transport with global warming, Geophys. Res. Lett., 37, L24807, doi:10.1029/2010GL045440. Hwang, Y.‐T., and D. M. W. Frierson ( 2013 ), A link between the double intertropical convergence zone problem and cloud biases over the Southern Ocean, Proc. Natl. Acad. Sci., doi:10.1073/pnas.1213302110. Kay, J. E., et al. ( 2012 ), Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators, J. Clim., 25, 5190 – 5207, doi:10.1175/JCLI‐D‐11‐00469.1. Kidston, J., and E. P. Gerber ( 2010 ), Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology, Geophys. Res. Lett., 37, L09708, doi:10.1029/2010GL042873. Lamarque, J.‐F., et al. ( 2011 ), Global and regional evolution of short‐lived radiatively active gases and aerosols in the Representative Concentration Pathways, Clim. Change, doi:10.1007/s10584‐011‐0155‐0. Lefebvre, W., and H. Goosse ( 2008 ), Analysis of the projected regional sea‐ice changes in the Southern Ocean during the twenty‐first century, Clim. Dyn., 30, 59 – 76, doi:10.1007/s00382‐007‐0273‐6. Meinshausen, M., et al. ( 2011 ), The RCP greenhouse gas concentrations and their extension from 1765 to 2300, Clim. Change, (Special Issue), doi:10.1007/s10584‐011‐0156‐z. Thompson, D. W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly ( 2011 ), Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change, Nat. Geosci., 4, 741 – 749, doi:10.1038/ngeo1296. Trenberth, K. E., and J. T. Fasullo ( 2010 ), Simulation of present‐day and twenty‐first‐century energy budgets of the Southern Oceans, J. Clim., 23, 440 – 454, doi:10.1175/2009JCLI3152.1. Tsushima, Y., S. Emori, T. Ogura, M. Kimoto, M. J. Webb, K. D. Williams, M. A. Ringer, B. J. Soden, B. Li, and N. Andronova ( 2006 ), Importance of the mixed‐phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: A multi‐model study, Clim. Dyn., 27, 113 – 126, doi:10.1007/s00382‐006‐0127‐7. Vial, J., J.‐L. Dufresne, and S. Bony ( 2013 ), On the interpretation of inter‐model spread in CMIP5 climate sensitivity estimates, Clim. Dyn., 1–24, doi:10.1007/s00382‐013‐1725‐9. Williams, K. D., et al. ( 2013 ), The Transpose‐AMIP II experiment and its application to the understanding of Southern Ocean cloud biases in climate models, J. Clim., 26, 3258 – 3274, doi:10.1175/JCLI‐D‐12‐00429.1. Yin, J. H. ( 2005 ), A consistent poleward shift of the storm tracks in simulations of 21st century climate, Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684. Zelinka, M. D., S. A. Klein, K. E. Taylor, T. Andrews, M. J. Webb, J. M. Gregory, and P. M. Forster ( 2013 ), Contributions of different cloud types to feedbacks and rapid adjustments in CMIP5, J. Clim., 26, 5007 – 5027, doi:10.1175/JCLI‐D‐12‐00555.1. Barnes, E. A., and L. M. Polvani ( 2013 ), Response of the midlatitude jets and of their variability to increased greenhouse gases in the CMIP5 models, J. Clim., 26, 7117 – 7135, doi:10.1175/JCLI‐D‐12‐00536.1. Bender, F. A.‐M., V. Ramanathan, and G. Tselioudis ( 2011 ), Changes in extratropical storm track cloudiness 1983–2008: Observational support for a poleward shift, Clim. Dyn., 38, 2037 – 2053, doi:10.1007/s00382‐011‐1065‐6. IndexNoFollow Southern Ocean Climate Feedbacks Shortwave Radiation Jet Sea Ice Clouds Geological Sciences Science Article 2014 ftumdeepblue https://doi.org/10.1002/2013GL05831510.1175/2008JCLI2637.110.1175/JCLI‐D‐13‐00169.110.1029/2012GL05311510.1175/JCLI4040.110.1038/ngeo106210.1175/2011JCLI4083.110.1175/JCLI‐D‐11‐00197.110.1002/grl.5067510.1175/2011JCLI4052.110.1175/BAMS‐D‐12‐00121.110.1029 2023-07-31T21:14:25Z A climate model (Community Earth System Model with the Community Atmosphere Model version 5 (CESM‐CAM5)) is used to identify processes controlling Southern Ocean (30–70°S) absorbed shortwave radiation (ASR). In response to 21st century Representative Concentration Pathway 8.5 forcing, both sea ice loss (2.6 W m −2 ) and cloud changes (1.2 W m −2 ) enhance ASR, but their relative importance depends on location and season. Poleward of ~55°S, surface albedo reductions and increased cloud liquid water content (LWC) have competing effects on ASR changes. Equatorward of ~55°S, decreased LWC enhances ASR. The 21st century cloud LWC changes result from warming and near‐surface stability changes but appear unrelated to a small (1°) poleward shift in the eddy‐driven jet. In fact, the 21st century ASR changes are 5 times greater than ASR changes resulting from large (5°) naturally occurring jet latitude variability. More broadly, these results suggest that thermodynamics (warming and near‐surface stability), not poleward jet shifts, control 21st century Southern Ocean shortwave climate feedbacks. Key Points Sea ice loss (2.6 W m−2) and clouds (1.2 W m−2) explain RCP8.5 absorbed SW changes Southern Ocean radiatively important clouds (RIC) are low‐level liquid clouds RIC respond primarily to warming and stability changes, not poleward jet shifts Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/106751/1/grl51226.pdf Article in Journal/Newspaper Sea ice Southern Ocean University of Michigan: Deep Blue Southern Ocean Geophysical Research Letters 41 2 616 622