Diagnosing shortwave cryosphere radiative effect and its 21st century evolution in CESM

We incorporate a new diagnostic called the cryosphere radiative effect (CrRE), the instantaneous influence of surface snow and sea ice on the top‐of‐model solar energy budget, into two released versions of the Community Earth System Model (CESM1 and CCSM4). CrRE offers a more climatically relevant m...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Atmospheres
Main Authors: Perket, Justin, Flanner, Mark G., Kay, Jennifer E.
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley Periodicals, Inc. 2014
Subjects:
Online Access:http://hdl.handle.net/2027.42/106707
https://doi.org/10.1002/2013JD021139
id ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/106707
record_format openpolar
institution Open Polar
collection University of Michigan: Deep Blue
op_collection_id ftumdeepblue
language unknown
topic Albedo Feedback
CrRE
Snow Reflectance
Sea Ice Loss
Cryosphere Evolution
Atmospheric and Oceanic Sciences
Science
spellingShingle Albedo Feedback
CrRE
Snow Reflectance
Sea Ice Loss
Cryosphere Evolution
Atmospheric and Oceanic Sciences
Science
Perket, Justin
Flanner, Mark G.
Kay, Jennifer E.
Diagnosing shortwave cryosphere radiative effect and its 21st century evolution in CESM
topic_facet Albedo Feedback
CrRE
Snow Reflectance
Sea Ice Loss
Cryosphere Evolution
Atmospheric and Oceanic Sciences
Science
description We incorporate a new diagnostic called the cryosphere radiative effect (CrRE), the instantaneous influence of surface snow and sea ice on the top‐of‐model solar energy budget, into two released versions of the Community Earth System Model (CESM1 and CCSM4). CrRE offers a more climatically relevant metric of the cryospheric state than snow and sea ice extent and is influenced by factors such as the seasonal cycle of insolation, cloud masking, and vegetation cover. We evaluate CrRE during the late 20th century and over the 21st century, specifically diagnosing the nature of CrRE contributions from terrestrial and marine sources. The radiative influence of ice sheets and glaciers is not considered, but snow on top of them is accounted for. Present‐day global CrRE in both models is −3.8 W m −2 , with a boreal component (−4.2 to −4.6 W m −2 ) that compares well with observationally derived estimates (−3.9 to −4.6 W m −2 ). Similar present‐day CrRE in the two model versions results from compensating differences in cloud masking and sea ice extent. Over the 21st century, radiative forcing in the Representative Concentration Pathway (RCP) 8.5 scenario causes reduced boreal sea ice cover, austral sea ice cover, and boreal snow cover, which all contribute roughly equally to enhancing global absorbed shortwave radiation by 1.4–1.8 Wm −2 . Twenty‐first century RCP8.5 global cryospheric albedo feedback are +0.41 and +0.45 W/m 2 /K, indicating that the two models exhibit similar temperature‐normalized CrRE change. Key Points We implement the first GCM diagnostic calculation of cryosphere radiative effect Global average CrRE from snow and sea ice is −4 W m −2 in present‐day simulations Earth absorbs 1.6 W m −2 more insolation from cryosphere loss by 2099 in RCP8.5 Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/106707/1/jgrd51156.pdf
format Article in Journal/Newspaper
author Perket, Justin
Flanner, Mark G.
Kay, Jennifer E.
author_facet Perket, Justin
Flanner, Mark G.
Kay, Jennifer E.
author_sort Perket, Justin
title Diagnosing shortwave cryosphere radiative effect and its 21st century evolution in CESM
title_short Diagnosing shortwave cryosphere radiative effect and its 21st century evolution in CESM
title_full Diagnosing shortwave cryosphere radiative effect and its 21st century evolution in CESM
title_fullStr Diagnosing shortwave cryosphere radiative effect and its 21st century evolution in CESM
title_full_unstemmed Diagnosing shortwave cryosphere radiative effect and its 21st century evolution in CESM
title_sort diagnosing shortwave cryosphere radiative effect and its 21st century evolution in cesm
publisher Wiley Periodicals, Inc.
publishDate 2014
url http://hdl.handle.net/2027.42/106707
https://doi.org/10.1002/2013JD021139
geographic Austral
geographic_facet Austral
genre Arctic
Sea ice
genre_facet Arctic
Sea ice
op_relation Perket, Justin; Flanner, Mark G.; Kay, Jennifer E. (2014). "Diagnosing shortwave cryosphere radiative effect and its 21st century evolution in CESM." Journal of Geophysical Research: Atmospheres 119(3): 1356-1362.
2169-897X
2169-8996
http://hdl.handle.net/2027.42/106707
doi:10.1002/2013JD021139
Journal of Geophysical Research: Atmospheres
Qu, X., and A. Hall ( 2013 ), On the persistent spread in snow‐albedo feedback, Clim. Dyn., 42, 69 – 81, doi:10.1007/s00382‐013‐1774‐0.
Bony, S., et al. ( 2006 ), How well do we understand and evaluate climate change feedback processes?, J. Clim., 19 ( 15 ), 3445 – 3482, doi:10.1175/JCLI3819.1.
Box, J. E., X. Fettweis, J. C. Stroeve, M. Tedesco, D. K. Hall, and K. Steffen ( 2012 ), Greenland ice sheet albedo feedback: Thermodynamics and atmospheric drivers, Cryosphere, 6 ( 4 ), 821 – 839, doi:10.5194/tc‐6‐821‐2012.
Briegleb, B., and B. Light ( 2007 ), A Delta‐Eddington multiple scattering parameterization for solar radiation in the sea ice component of the Community Climate System Model, NCAR Tech. Note NCAR/TN‐472 + STR, doi:10.5065/D6B27S71.
Donohoe, A., and D. S. Battisti ( 2011 ), Atmospheric and surface contributions to planetary albedo, J. Clim., 24 ( 16 ), 4402 – 4418, doi:10.1175/2011JCLI3946.1.
Flanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch ( 2007 ), Present‐day climate forcing and response from black carbon in snow, J. Geophys. Res., 112, D11202, doi:10.1029/2006JD008003.
Flanner, M. G., K. M. Shell, M. Barlage, D. K. Perovich, and M. A. Tschudi ( 2011 ), Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008, Nat. Geosci., 4 ( 3 ), 151 – 155, doi:10.1038/ngeo1062.
Gent, P. R., et al. ( 2011 ), The Community Climate System Model Version 4, J. Clim., 24 ( 19 ), 4973 – 4991, doi:10.1175/2011JCLI4083.1.
Holland, M. M., D. A. Bailey, B. P. Briegleb, B. Light, and E. Hunke ( 2012 ), Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic Sea Ice, J. Clim., 25 ( 5 ), 1413 – 1430, doi:10.1175/JCLI‐D‐11‐00078.1.
Hurrell, J. W., et al. ( 2013 ), The Community Earth System Model: A framework for collaborative research, Bull. Am. Meteorol. Soc., 94 ( 9 ), 1339 – 1360, doi:10.1175/BAMS‐D‐12‐00121.1.
Kay, J. E., K. Raeder, A. Gettelman, and J. Anderson ( 2011 ), The boundary layer response to recent Arctic sea ice loss and implications for high‐latitude climate feedbacks, J. Clim., 24 ( 2 ), 428 – 447, doi:10.1175/2010JCLI3651.1.
Kay, J. E., M. M. Holland, C. M. Bitz, E. Blanchard‐Wrigglesworth, A. Gettelman, A. Conley, and D. Bailey ( 2012 ), The influence of local feedbacks and northward heat transport on the equilibrium Arctic climate response to increased greenhouse gas forcing, J. Clim., 25 ( 16 ), 5433 – 5450, doi:10.1175/JCLI‐D‐11‐00622.1.
Lawrence, D. M., et al. ( 2011 ), Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model, J. Adv. Model. Earth Syst., 3 ( 3 ), 1 – 27, doi:10.1029/2011MS000045.
Meehl, G. A., W. M. Washington, J. M. Arblaster, A. Hu, H. Teng, J. E. Kay, A. Gettelman, D. M. Lawrence, B. M. Sanderson, and W. G. Strand ( 2013 ), Climate change projections in CESM1(CAM5) compared to CCSM4, J. Clim., 26 ( 17 ), 6287 – 6308, doi:10.1175/JCLI‐D‐12‐00572.1.
Meinshausen, M., et al. ( 2011 ), The RCP greenhouse gas concentrations and their extensions from 1765 to 2300, Clim. Change, 109 ( 1–2 ), 213 – 241, doi:10.1007/s10584‐011‐0156‐z.
Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann ( 1989 ), Cloud‐radiative forcing and climate: Results from the Earth radiation budget experiment, Science, 243 ( 4887 ), 57 – 63, doi:10.1126/science.243.4887.57.
Shell, K. M., J. T. Kiehl, and C. A. Shields ( 2008 ), Using the radiative kernel technique to calculate climate feedbacks in NCAR's Community Atmospheric Model, J. Clim., 21 ( 10 ), 2269 – 2282, doi:10.1175/2007JCLI2044.1.
Soden, B. J., and I. M. Held ( 2006 ), An assessment of climate feedbacks in coupled ocean–atmosphere models, J. Clim., 19 ( 14 ), 3354 – 3360, doi:10.1175/JCLI3799.1.
Soden, B. J., I. M. Held, R. Colman, K. M. Shell, J. T. Kiehl, and C. A. Shields ( 2008 ), Quantifying climate feedbacks using radiative kernels, J. Clim., 21 ( 14 ), 3504 – 3520, doi:10.1175/2007JCLI2110.1.
Stephens, G. ( 2005 ), Cloud feedbacks in the climate system: A critical review, J. Clim., 18, 237 – 273.
Winton, M. ( 2006 ), Amplified Arctic climate change: What does surface albedo feedback have to do with it?, Geophys. Res. Lett., 33, L03701, doi:10.1029/2005GL025244.
Arking, A. ( 1991 ), The radiative effects of clouds and their impact on climate, Bull. Am. Meteorol. Soc., 71 ( 6 ), 795 – 813.
Bøggild, C. E., R. E. Brandt, K. J. Brown, and S. G. Warren ( 2010 ), The ablation zone in northeast Greenland: Ice types, albedos and impurities, J. Glaciol., 56, 101 – 113, doi:10.3189/002214310791190776.
op_rights IndexNoFollow
op_doi https://doi.org/10.1002/2013JD02113910.1007/s00382‐013‐1774‐010.5194/tc‐6‐821‐201210.5065/D6B27S7110.1175/2011JCLI3946.110.1029/2006JD00800310.1038/ngeo106210.1175/2011JCLI4083.110.1175/JCLI‐D‐11‐00078.110.1175/BAMS‐D‐12‐00121.110.1175/2010JCLI3651.110.11
container_title Journal of Geophysical Research: Atmospheres
container_volume 119
container_issue 3
container_start_page 1356
op_container_end_page 1362
_version_ 1774713576822407168
spelling ftumdeepblue:oai:deepblue.lib.umich.edu:2027.42/106707 2023-08-20T04:03:10+02:00 Diagnosing shortwave cryosphere radiative effect and its 21st century evolution in CESM Perket, Justin Flanner, Mark G. Kay, Jennifer E. 2014-02-16 application/pdf http://hdl.handle.net/2027.42/106707 https://doi.org/10.1002/2013JD021139 unknown Wiley Periodicals, Inc. Perket, Justin; Flanner, Mark G.; Kay, Jennifer E. (2014). "Diagnosing shortwave cryosphere radiative effect and its 21st century evolution in CESM." Journal of Geophysical Research: Atmospheres 119(3): 1356-1362. 2169-897X 2169-8996 http://hdl.handle.net/2027.42/106707 doi:10.1002/2013JD021139 Journal of Geophysical Research: Atmospheres Qu, X., and A. Hall ( 2013 ), On the persistent spread in snow‐albedo feedback, Clim. Dyn., 42, 69 – 81, doi:10.1007/s00382‐013‐1774‐0. Bony, S., et al. ( 2006 ), How well do we understand and evaluate climate change feedback processes?, J. Clim., 19 ( 15 ), 3445 – 3482, doi:10.1175/JCLI3819.1. Box, J. E., X. Fettweis, J. C. Stroeve, M. Tedesco, D. K. Hall, and K. Steffen ( 2012 ), Greenland ice sheet albedo feedback: Thermodynamics and atmospheric drivers, Cryosphere, 6 ( 4 ), 821 – 839, doi:10.5194/tc‐6‐821‐2012. Briegleb, B., and B. Light ( 2007 ), A Delta‐Eddington multiple scattering parameterization for solar radiation in the sea ice component of the Community Climate System Model, NCAR Tech. Note NCAR/TN‐472 + STR, doi:10.5065/D6B27S71. Donohoe, A., and D. S. Battisti ( 2011 ), Atmospheric and surface contributions to planetary albedo, J. Clim., 24 ( 16 ), 4402 – 4418, doi:10.1175/2011JCLI3946.1. Flanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch ( 2007 ), Present‐day climate forcing and response from black carbon in snow, J. Geophys. Res., 112, D11202, doi:10.1029/2006JD008003. Flanner, M. G., K. M. Shell, M. Barlage, D. K. Perovich, and M. A. Tschudi ( 2011 ), Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008, Nat. Geosci., 4 ( 3 ), 151 – 155, doi:10.1038/ngeo1062. Gent, P. R., et al. ( 2011 ), The Community Climate System Model Version 4, J. Clim., 24 ( 19 ), 4973 – 4991, doi:10.1175/2011JCLI4083.1. Holland, M. M., D. A. Bailey, B. P. Briegleb, B. Light, and E. Hunke ( 2012 ), Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic Sea Ice, J. Clim., 25 ( 5 ), 1413 – 1430, doi:10.1175/JCLI‐D‐11‐00078.1. Hurrell, J. W., et al. ( 2013 ), The Community Earth System Model: A framework for collaborative research, Bull. Am. Meteorol. Soc., 94 ( 9 ), 1339 – 1360, doi:10.1175/BAMS‐D‐12‐00121.1. Kay, J. E., K. Raeder, A. Gettelman, and J. Anderson ( 2011 ), The boundary layer response to recent Arctic sea ice loss and implications for high‐latitude climate feedbacks, J. Clim., 24 ( 2 ), 428 – 447, doi:10.1175/2010JCLI3651.1. Kay, J. E., M. M. Holland, C. M. Bitz, E. Blanchard‐Wrigglesworth, A. Gettelman, A. Conley, and D. Bailey ( 2012 ), The influence of local feedbacks and northward heat transport on the equilibrium Arctic climate response to increased greenhouse gas forcing, J. Clim., 25 ( 16 ), 5433 – 5450, doi:10.1175/JCLI‐D‐11‐00622.1. Lawrence, D. M., et al. ( 2011 ), Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model, J. Adv. Model. Earth Syst., 3 ( 3 ), 1 – 27, doi:10.1029/2011MS000045. Meehl, G. A., W. M. Washington, J. M. Arblaster, A. Hu, H. Teng, J. E. Kay, A. Gettelman, D. M. Lawrence, B. M. Sanderson, and W. G. Strand ( 2013 ), Climate change projections in CESM1(CAM5) compared to CCSM4, J. Clim., 26 ( 17 ), 6287 – 6308, doi:10.1175/JCLI‐D‐12‐00572.1. Meinshausen, M., et al. ( 2011 ), The RCP greenhouse gas concentrations and their extensions from 1765 to 2300, Clim. Change, 109 ( 1–2 ), 213 – 241, doi:10.1007/s10584‐011‐0156‐z. Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann ( 1989 ), Cloud‐radiative forcing and climate: Results from the Earth radiation budget experiment, Science, 243 ( 4887 ), 57 – 63, doi:10.1126/science.243.4887.57. Shell, K. M., J. T. Kiehl, and C. A. Shields ( 2008 ), Using the radiative kernel technique to calculate climate feedbacks in NCAR's Community Atmospheric Model, J. Clim., 21 ( 10 ), 2269 – 2282, doi:10.1175/2007JCLI2044.1. Soden, B. J., and I. M. Held ( 2006 ), An assessment of climate feedbacks in coupled ocean–atmosphere models, J. Clim., 19 ( 14 ), 3354 – 3360, doi:10.1175/JCLI3799.1. Soden, B. J., I. M. Held, R. Colman, K. M. Shell, J. T. Kiehl, and C. A. Shields ( 2008 ), Quantifying climate feedbacks using radiative kernels, J. Clim., 21 ( 14 ), 3504 – 3520, doi:10.1175/2007JCLI2110.1. Stephens, G. ( 2005 ), Cloud feedbacks in the climate system: A critical review, J. Clim., 18, 237 – 273. Winton, M. ( 2006 ), Amplified Arctic climate change: What does surface albedo feedback have to do with it?, Geophys. Res. Lett., 33, L03701, doi:10.1029/2005GL025244. Arking, A. ( 1991 ), The radiative effects of clouds and their impact on climate, Bull. Am. Meteorol. Soc., 71 ( 6 ), 795 – 813. Bøggild, C. E., R. E. Brandt, K. J. Brown, and S. G. Warren ( 2010 ), The ablation zone in northeast Greenland: Ice types, albedos and impurities, J. Glaciol., 56, 101 – 113, doi:10.3189/002214310791190776. IndexNoFollow Albedo Feedback CrRE Snow Reflectance Sea Ice Loss Cryosphere Evolution Atmospheric and Oceanic Sciences Science Article 2014 ftumdeepblue https://doi.org/10.1002/2013JD02113910.1007/s00382‐013‐1774‐010.5194/tc‐6‐821‐201210.5065/D6B27S7110.1175/2011JCLI3946.110.1029/2006JD00800310.1038/ngeo106210.1175/2011JCLI4083.110.1175/JCLI‐D‐11‐00078.110.1175/BAMS‐D‐12‐00121.110.1175/2010JCLI3651.110.11 2023-07-31T20:32:35Z We incorporate a new diagnostic called the cryosphere radiative effect (CrRE), the instantaneous influence of surface snow and sea ice on the top‐of‐model solar energy budget, into two released versions of the Community Earth System Model (CESM1 and CCSM4). CrRE offers a more climatically relevant metric of the cryospheric state than snow and sea ice extent and is influenced by factors such as the seasonal cycle of insolation, cloud masking, and vegetation cover. We evaluate CrRE during the late 20th century and over the 21st century, specifically diagnosing the nature of CrRE contributions from terrestrial and marine sources. The radiative influence of ice sheets and glaciers is not considered, but snow on top of them is accounted for. Present‐day global CrRE in both models is −3.8 W m −2 , with a boreal component (−4.2 to −4.6 W m −2 ) that compares well with observationally derived estimates (−3.9 to −4.6 W m −2 ). Similar present‐day CrRE in the two model versions results from compensating differences in cloud masking and sea ice extent. Over the 21st century, radiative forcing in the Representative Concentration Pathway (RCP) 8.5 scenario causes reduced boreal sea ice cover, austral sea ice cover, and boreal snow cover, which all contribute roughly equally to enhancing global absorbed shortwave radiation by 1.4–1.8 Wm −2 . Twenty‐first century RCP8.5 global cryospheric albedo feedback are +0.41 and +0.45 W/m 2 /K, indicating that the two models exhibit similar temperature‐normalized CrRE change. Key Points We implement the first GCM diagnostic calculation of cryosphere radiative effect Global average CrRE from snow and sea ice is −4 W m −2 in present‐day simulations Earth absorbs 1.6 W m −2 more insolation from cryosphere loss by 2099 in RCP8.5 Peer Reviewed http://deepblue.lib.umich.edu/bitstream/2027.42/106707/1/jgrd51156.pdf Article in Journal/Newspaper Arctic Sea ice University of Michigan: Deep Blue Austral Journal of Geophysical Research: Atmospheres 119 3 1356 1362