Analysis of the global ESA GlobPermafrost map for Scandinavia

Due to its high vulnerability, permafrost is one of the key features studied in the field of climate change impacts. Permafrost is widespread in the Arctic region. The majority of the area underlain by permafrost is however difficult to access for in-situ monitoring and it is difficult to get an ove...

Full description

Bibliographic Details
Main Author: Nesterova, Nina
Format: Other/Unknown Material
Language:English
Published: Lunds universitet/Institutionen för naturgeografi och ekosystemvetenskap 2018
Subjects:
Online Access:http://lup.lub.lu.se/student-papers/record/8955040
id ftulundlupsp:oai:lup-student-papers.lub.lu.se:8955040
record_format openpolar
spelling ftulundlupsp:oai:lup-student-papers.lub.lu.se:8955040 2023-07-30T04:01:40+02:00 Analysis of the global ESA GlobPermafrost map for Scandinavia Nesterova, Nina 2018 application/pdf http://lup.lub.lu.se/student-papers/record/8955040 eng eng Lunds universitet/Institutionen för naturgeografi och ekosystemvetenskap http://lup.lub.lu.se/student-papers/record/8955040 Physical Geography and Ecosystem analysis Arctic permafrost permafrost modeling TTOP CryoGRID 1 GlobPermafrost Scandinavia Earth and Environmental Sciences H2 2018 ftulundlupsp 2023-07-11T20:08:33Z Due to its high vulnerability, permafrost is one of the key features studied in the field of climate change impacts. Permafrost is widespread in the Arctic region. The majority of the area underlain by permafrost is however difficult to access for in-situ monitoring and it is difficult to get an overview of the current state of permafrost in many areas. Permafrost modeling provides a solution which overcomes this difficulty and allows studies on permafrost distribution as well as some characteristics, i.e. ground temperatures over large remote areas. Temperature at the top of the permafrost (TTOP) is one of several permafrost modeling approaches which conceptually represents a steady-state equilibrium model. In this study, two TTOP-based models were used; the GlobPermafrost model which was used to produce the most recent global permafrost map (Alfred-Wegener-Institut) and a local Scandinavian model. The aim of this study was twofold; firstly, the performance of the GlobPermafrost model in Scandinavia was analyzed by comparing the model output with the output from the local Scandinavian model. Secondly, the role of land cover data as an input variable in the TTOP model was investigated. The TTOP-based GlobPermafrost model was run with different land cover input data to evaluate this. In general, the GlobPermafrost model underestimated permafrost occurrence in Scandinavia (overall r2 being 0.39). The lowest underestimation is located in the regions with little or no permafrost. The biggest underestimations are found in peatlands and mountainous areas with more likely permafrost occurrence. Unexpected underestimation of permafrost was observed in the forests. This exposed the weaknesses of regional permafrost model overestimating permafrost occurrence in forests. The rerun of the GlobPermafrost model with three times more detailed land cover input data did surprisingly not have a great effect on the model performance (r2 only changed by 8%). The small changes detected in the GlobPermafrost output could be explained ... Other/Unknown Material Arctic Climate change permafrost Lund University Publications Student Papers (LUP-SP) Arctic
institution Open Polar
collection Lund University Publications Student Papers (LUP-SP)
op_collection_id ftulundlupsp
language English
topic Physical Geography and Ecosystem analysis
Arctic
permafrost
permafrost modeling
TTOP
CryoGRID 1
GlobPermafrost
Scandinavia
Earth and Environmental Sciences
spellingShingle Physical Geography and Ecosystem analysis
Arctic
permafrost
permafrost modeling
TTOP
CryoGRID 1
GlobPermafrost
Scandinavia
Earth and Environmental Sciences
Nesterova, Nina
Analysis of the global ESA GlobPermafrost map for Scandinavia
topic_facet Physical Geography and Ecosystem analysis
Arctic
permafrost
permafrost modeling
TTOP
CryoGRID 1
GlobPermafrost
Scandinavia
Earth and Environmental Sciences
description Due to its high vulnerability, permafrost is one of the key features studied in the field of climate change impacts. Permafrost is widespread in the Arctic region. The majority of the area underlain by permafrost is however difficult to access for in-situ monitoring and it is difficult to get an overview of the current state of permafrost in many areas. Permafrost modeling provides a solution which overcomes this difficulty and allows studies on permafrost distribution as well as some characteristics, i.e. ground temperatures over large remote areas. Temperature at the top of the permafrost (TTOP) is one of several permafrost modeling approaches which conceptually represents a steady-state equilibrium model. In this study, two TTOP-based models were used; the GlobPermafrost model which was used to produce the most recent global permafrost map (Alfred-Wegener-Institut) and a local Scandinavian model. The aim of this study was twofold; firstly, the performance of the GlobPermafrost model in Scandinavia was analyzed by comparing the model output with the output from the local Scandinavian model. Secondly, the role of land cover data as an input variable in the TTOP model was investigated. The TTOP-based GlobPermafrost model was run with different land cover input data to evaluate this. In general, the GlobPermafrost model underestimated permafrost occurrence in Scandinavia (overall r2 being 0.39). The lowest underestimation is located in the regions with little or no permafrost. The biggest underestimations are found in peatlands and mountainous areas with more likely permafrost occurrence. Unexpected underestimation of permafrost was observed in the forests. This exposed the weaknesses of regional permafrost model overestimating permafrost occurrence in forests. The rerun of the GlobPermafrost model with three times more detailed land cover input data did surprisingly not have a great effect on the model performance (r2 only changed by 8%). The small changes detected in the GlobPermafrost output could be explained ...
format Other/Unknown Material
author Nesterova, Nina
author_facet Nesterova, Nina
author_sort Nesterova, Nina
title Analysis of the global ESA GlobPermafrost map for Scandinavia
title_short Analysis of the global ESA GlobPermafrost map for Scandinavia
title_full Analysis of the global ESA GlobPermafrost map for Scandinavia
title_fullStr Analysis of the global ESA GlobPermafrost map for Scandinavia
title_full_unstemmed Analysis of the global ESA GlobPermafrost map for Scandinavia
title_sort analysis of the global esa globpermafrost map for scandinavia
publisher Lunds universitet/Institutionen för naturgeografi och ekosystemvetenskap
publishDate 2018
url http://lup.lub.lu.se/student-papers/record/8955040
geographic Arctic
geographic_facet Arctic
genre Arctic
Climate change
permafrost
genre_facet Arctic
Climate change
permafrost
op_relation http://lup.lub.lu.se/student-papers/record/8955040
_version_ 1772812442086146048