Snow and sea ice temperature profiles from satellite data and ice mass balance buoys

The sea ice covers approximately 5% of the Earth’s surface at any given time and it plays an important role in the polar climate system affecting the heat, mass and momentum exchange between the atmosphere and the ocean. The snow cover on top of the sea ice affects its insulating and reflective prop...

Full description

Bibliographic Details
Main Author: Grönfeldt, Isabella
Format: Other/Unknown Material
Language:English
Published: Lunds universitet/Institutionen för naturgeografi och ekosystemvetenskap 2016
Subjects:
IMB
TIR
Online Access:http://lup.lub.lu.se/student-papers/record/8812383
Description
Summary:The sea ice covers approximately 5% of the Earth’s surface at any given time and it plays an important role in the polar climate system affecting the heat, mass and momentum exchange between the atmosphere and the ocean. The snow cover on top of the sea ice affects its insulating and reflective properties and thus key figures in the climate system feedback loop. Sea ice and snow is of significant importance for our global climate system. However, it is difficult to effectively and accurately access data relating to snow and sea ice properties in the vast and remote Arctic region, especially during the winter, and snow is poorly constrained in current climate models. Improved information on snow and sea ice properties and thermodynamics from satellite observations could give valuable information in the process of validating, optimizing and improving these sea ice models and thereby the future predictions of sea ice growth and related climate variables. This project examines the possibility of deriving the temperature profile through the snow and ice layers, from the surface down to 0.5 m into the ice, from a combination of available satellite data. Satellite data used are thermal infrared (TIR) and microwave radiation at different wavelengths and polarisations. The satellite data are compared with coincident data from ice mass balance buoys (IMB) and numerical weather prediction (NWP) data. This combined dataset are analysed for possible and theoretically derived relationships between the satellite measurements and different snow and ice parameters. Different empirical models are used in this study to derive the mean snow temperature, snow density and snow and ice thickness, with various degree of success. It is clear that more advanced models are needed to accurately predict the observed variations of the snow and ice parameters. From the analysis it is clear that the satellite channels of lower frequencies are able to retrieve temperature measurements from deeper levels in the snow and ice than the higher ...