Lipase catalysed synthesis of speciality chemicals: technical, economical & environmental aspects

Most people agree that the total ecological impact of society has become more than this planet can endure. This is because we consume our resources (such as oil and water) faster than they can regenerate and because we release more substances into the environment than can be assimilated (e.g. CO2)....

Full description

Bibliographic Details
Main Author: Tufvesson, Pär
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2008
Subjects:
Online Access:https://lup.lub.lu.se/record/1268217
https://portal.research.lu.se/files/6215843/1268364.pdf
Description
Summary:Most people agree that the total ecological impact of society has become more than this planet can endure. This is because we consume our resources (such as oil and water) faster than they can regenerate and because we release more substances into the environment than can be assimilated (e.g. CO2). In other words: our society is not sustainable on a long term basis. Biocatalysis is being promoted as a clean, environmentally friendly technology because it is natural, inherently works at very mild conditions, and predominantly utilises raw material that comes from renewable resources. Biocatalysis is the use of whole cells or enzymes for the catalysis of chemical reactions. In this work two different model reactions have been studied: (1) production of an epoxide coating component (used e.g. in the painting of cars), through chemo-enzymatic epoxidation of allyl ethers, and (2) the production of alkanolamide surfactants through the amidation of fatty acid with ethanolamine. For the synthesis of the epoxide (glycidyl ether) the aim was to find an alternative route to avoid the use of the toxic reagent epichlorohydrin, conventionally used in its manufacturing. Lipase B from Candida antarctica (CALB) was used to catalyse the formation of peracid from a fatty acid and hydrogen peroxide, which was utilised in situ for the epoxidation of the terminal unsaturated carbon-carbon bond of an allyl ether to form the desired epoxide. The reaction was found to be feasible in small scale and through optimisation a 75% yield of the product could be obtained from a reaction mixture containing up to one molar of the starting material. However, the conditions under which the epoxidation reaction was optimal was found to be too harsh for the enzyme. The need for a cheaper or more stable enzyme was identified as a major hurdle for industrial application of the technology. The synthesis of alkanolamide surfactant was also catalysed by CALB; the reaction between dodecanoic acid and ethanolamine was used as a starting point. The reaction ...