Detecting the Greatest Changes in Global Satellite-Based Precipitation Observations
In recent years, the analysis of abrupt and non-abrupt changes in precipitation has received much attention due to the importance of climate change-related issues (e.g., extreme climate events). In this study, we used a novel segmentation algorithm, DBEST (Detecting Breakpoints and Estimating Segmen...
Published in: | Remote Sensing |
---|---|
Main Authors: | , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
MDPI AG
2022
|
Subjects: | |
Online Access: | https://lup.lub.lu.se/record/e80145f8-7785-4bc1-8639-341fd805436b https://doi.org/10.3390/rs14215433 |
id |
ftulundlup:oai:lup.lub.lu.se:e80145f8-7785-4bc1-8639-341fd805436b |
---|---|
record_format |
openpolar |
spelling |
ftulundlup:oai:lup.lub.lu.se:e80145f8-7785-4bc1-8639-341fd805436b 2023-09-05T13:23:11+02:00 Detecting the Greatest Changes in Global Satellite-Based Precipitation Observations Kazemzadeh, Majid Hashemi, Hossein Jamali, Sadegh B Uvo, Cintia Berndtsson, Ronny Huffman, George 2022 https://lup.lub.lu.se/record/e80145f8-7785-4bc1-8639-341fd805436b https://doi.org/10.3390/rs14215433 eng eng MDPI AG https://lup.lub.lu.se/record/e80145f8-7785-4bc1-8639-341fd805436b http://dx.doi.org/10.3390/rs14215433 scopus:85141871732 Remote Sensing; 14(21), no 5433 (2022) ISSN: 2072-4292 Remote Sensing breakpoint DBEST global precipitation TRMM satellite contributiontojournal/article info:eu-repo/semantics/article text 2022 ftulundlup https://doi.org/10.3390/rs14215433 2023-08-23T22:28:38Z In recent years, the analysis of abrupt and non-abrupt changes in precipitation has received much attention due to the importance of climate change-related issues (e.g., extreme climate events). In this study, we used a novel segmentation algorithm, DBEST (Detecting Breakpoints and Estimating Segments in Trend), to analyze the greatest changes in precipitation using a monthly pixel-based satellite precipitation dataset (TRMM 3B43) at three different scales: (i) global, (ii) continental, and (iii) climate zone, during the 1998–2019 period. We found significant breakpoints, 14.1%, both in the form of abrupt and non-abrupt changes, in the global scale precipitation at the 0.05 significance level. Most of the abrupt changes were observed near the Equator in the Pacific Ocean and Asian continent, relative to the rest of the globe. Most detected breakpoints occurred during the 1998–1999 and 2009–2011 periods on the global scale. The average precipitation change for the detected breakpoint was ±100 mm, with some regions reaching ±3000 mm. For instance, most portions of northern Africa and Asia experienced major changes of approximately +100 mm. In contrast, most of the South Pacific and South Atlantic Ocean experienced changes of −100 mm during the studied period. Our findings indicated that the larger areas of Africa (23.9%), Asia (22.9%), and Australia (15.4%) experienced significant precipitation breakpoints compared to North America (11.6%), South America (9.3%), Europe (8.3%), and Oceania (9.6%). Furthermore, we found that the majority of detected significant breakpoints occurred in the arid (31.6%) and polar (24.1%) climate zones, while the least significant breakpoints were found for snow-covered (11.5%), equatorial (7.5%), and warm temperate (7.7%) climate zones. Positive breakpoints’ temporal coverage in the arid (54.0%) and equatorial (51.9%) climates were more than those in other climates zones. Here, the findings indicated that large areas of Africa and Asia experienced significant changes in precipitation ... Article in Journal/Newspaper South Atlantic Ocean Lund University Publications (LUP) Pacific Remote Sensing 14 21 5433 |
institution |
Open Polar |
collection |
Lund University Publications (LUP) |
op_collection_id |
ftulundlup |
language |
English |
topic |
Remote Sensing breakpoint DBEST global precipitation TRMM satellite |
spellingShingle |
Remote Sensing breakpoint DBEST global precipitation TRMM satellite Kazemzadeh, Majid Hashemi, Hossein Jamali, Sadegh B Uvo, Cintia Berndtsson, Ronny Huffman, George Detecting the Greatest Changes in Global Satellite-Based Precipitation Observations |
topic_facet |
Remote Sensing breakpoint DBEST global precipitation TRMM satellite |
description |
In recent years, the analysis of abrupt and non-abrupt changes in precipitation has received much attention due to the importance of climate change-related issues (e.g., extreme climate events). In this study, we used a novel segmentation algorithm, DBEST (Detecting Breakpoints and Estimating Segments in Trend), to analyze the greatest changes in precipitation using a monthly pixel-based satellite precipitation dataset (TRMM 3B43) at three different scales: (i) global, (ii) continental, and (iii) climate zone, during the 1998–2019 period. We found significant breakpoints, 14.1%, both in the form of abrupt and non-abrupt changes, in the global scale precipitation at the 0.05 significance level. Most of the abrupt changes were observed near the Equator in the Pacific Ocean and Asian continent, relative to the rest of the globe. Most detected breakpoints occurred during the 1998–1999 and 2009–2011 periods on the global scale. The average precipitation change for the detected breakpoint was ±100 mm, with some regions reaching ±3000 mm. For instance, most portions of northern Africa and Asia experienced major changes of approximately +100 mm. In contrast, most of the South Pacific and South Atlantic Ocean experienced changes of −100 mm during the studied period. Our findings indicated that the larger areas of Africa (23.9%), Asia (22.9%), and Australia (15.4%) experienced significant precipitation breakpoints compared to North America (11.6%), South America (9.3%), Europe (8.3%), and Oceania (9.6%). Furthermore, we found that the majority of detected significant breakpoints occurred in the arid (31.6%) and polar (24.1%) climate zones, while the least significant breakpoints were found for snow-covered (11.5%), equatorial (7.5%), and warm temperate (7.7%) climate zones. Positive breakpoints’ temporal coverage in the arid (54.0%) and equatorial (51.9%) climates were more than those in other climates zones. Here, the findings indicated that large areas of Africa and Asia experienced significant changes in precipitation ... |
format |
Article in Journal/Newspaper |
author |
Kazemzadeh, Majid Hashemi, Hossein Jamali, Sadegh B Uvo, Cintia Berndtsson, Ronny Huffman, George |
author_facet |
Kazemzadeh, Majid Hashemi, Hossein Jamali, Sadegh B Uvo, Cintia Berndtsson, Ronny Huffman, George |
author_sort |
Kazemzadeh, Majid |
title |
Detecting the Greatest Changes in Global Satellite-Based Precipitation Observations |
title_short |
Detecting the Greatest Changes in Global Satellite-Based Precipitation Observations |
title_full |
Detecting the Greatest Changes in Global Satellite-Based Precipitation Observations |
title_fullStr |
Detecting the Greatest Changes in Global Satellite-Based Precipitation Observations |
title_full_unstemmed |
Detecting the Greatest Changes in Global Satellite-Based Precipitation Observations |
title_sort |
detecting the greatest changes in global satellite-based precipitation observations |
publisher |
MDPI AG |
publishDate |
2022 |
url |
https://lup.lub.lu.se/record/e80145f8-7785-4bc1-8639-341fd805436b https://doi.org/10.3390/rs14215433 |
geographic |
Pacific |
geographic_facet |
Pacific |
genre |
South Atlantic Ocean |
genre_facet |
South Atlantic Ocean |
op_source |
Remote Sensing; 14(21), no 5433 (2022) ISSN: 2072-4292 |
op_relation |
https://lup.lub.lu.se/record/e80145f8-7785-4bc1-8639-341fd805436b http://dx.doi.org/10.3390/rs14215433 scopus:85141871732 |
op_doi |
https://doi.org/10.3390/rs14215433 |
container_title |
Remote Sensing |
container_volume |
14 |
container_issue |
21 |
container_start_page |
5433 |
_version_ |
1776203746194227200 |