Soil organic phosphorus transformations in a boreal forest chronosequence
Soil phosphorus (P) composition changes with ecosystem development, leading to changes in P bioavailability and ecosystem properties. Little is known, however, about how soil P transformations proceed with ecosystem development in boreal regions. We used 1-dimensional P-31 and 2-dimensional H-1, P-3...
Published in: | Plant and Soil |
---|---|
Main Authors: | , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Springer
2013
|
Subjects: | |
Online Access: | https://lup.lub.lu.se/record/3927231 https://doi.org/10.1007/s11104-013-1731-z |
Summary: | Soil phosphorus (P) composition changes with ecosystem development, leading to changes in P bioavailability and ecosystem properties. Little is known, however, about how soil P transformations proceed with ecosystem development in boreal regions. We used 1-dimensional P-31 and 2-dimensional H-1, P-31 correlation nuclear magnetic resonance (NMR) spectroscopy to characterise soil organic P transformations in humus horizons across a 7,800 year-old chronosequence in Vasterbotten, northern Sweden. Total soil P concentration varied little along the chronosequence, but P compounds followed three trends. Firstly, the concentrations of DNA, 2-aminoethyl phosphonic acid, and polyphosphate, increased up to 1,200-2,700 years and then declined. Secondly, the abundances of alpha- and beta-glycerophosphate, nucleotides, and pyrophosphate, were higher at the youngest site compared with all other sites. Lastly, concentrations of inositol hexakisphosphate fluctuated with site age. The largest changes in soil P composition tended to occur in young sites which also experience the largest shifts in plant community composition. The apparent lack of change in total soil P is consistent with the youth and nitrogen limited nature of the Vasterbotten chronosequence. Based on 2D NMR spectra, around 40 % of extractable soil organic P appeared to occur in live microbial cells. The observed trends in soil organic P may be related to shifts in plant community composition (and associated changes in soil microorganisms) along the studied chronosequence, but further studies are needed to confirm this. |
---|