PFAS in the water supply: source water contamination

Water contamination with per- and polyfluoroalkyl substances (PFAS) is a serious problem for water suppliers in many regions. Due to persistence of the substances and a complex distribution mechanism, PFAS can have an adverse impact on water quality. Reported toxicological and health effects, make i...

Full description

Bibliographic Details
Main Author: Mussabek, Dauren
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Department of Water Resources Engineering, Lund Institute of Technology, Lund University 2021
Subjects:
Online Access:https://lup.lub.lu.se/record/b4f33f88-81cd-4f48-93d6-1c4bae8c2d4d
https://portal.research.lu.se/files/102768626/Dauren_Mussabek_WEBB.pdf
Description
Summary:Water contamination with per- and polyfluoroalkyl substances (PFAS) is a serious problem for water suppliers in many regions. Due to persistence of the substances and a complex distribution mechanism, PFAS can have an adverse impact on water quality. Reported toxicological and health effects, make it very important to minimise the of wildlife and human exposure to PFAS. The exposure path is, however, associated with the most vital resource as water.Mitigation of the PFAS contamination is an extensive challenge that requires a multidisciplinary investigation of the pollution nature and distribution mechanisms in the aquatic environment. Furthermore, since conventional drinking water treatment is insufficient in PFAS removal, development of the treatment alternative is necessary. Not least due to substantial number of contaminated water sources and an increasing worldwide demand on drinking water.Present thesis was built around investigation of the historical source water contamination and human exposure to PFAS at studied locations in Ronneby (primarily) and Luleå in Sweden. Several interconnected studies were conducted regarding present contamination levels, transport and distribution mechanism, contamination and emission history, as well as PFAS treatment alternatives for drinking water.PFAS analysis and assessment of the contamination levels in surface water, groundwater, and sediments were conducted. PFAS occurrence at studied locations was connected to historical use of PFAS containing aqueous film forming foam (PFAS-AFFF). By means of core analysis, accumulation period was studied for the exposed recipient (Lake). Furthermore, influence of the media characteristics (i.e., mineral composition, density, moisture, and organic matter content) on PFAS distribution in sediment was studied and corresponding distribution (partitioning) predictors were estimated. Regarding emission source, profiling of the possible PFAS-AFFF compositions was conducted (based on groundwater analysis), and possible application and ...