Microbial evolution: patterns of diversity in aquatic protists

Little is known about how microbes diversify in nature. In contrast to the more studied multicellular organisms, microbes can have a) huge population sizes, b) high reproductive rates and c) long-distance dispersal. These characteristics can affect their tempo and mode of diversification in ways tha...

Full description

Bibliographic Details
Main Author: Logares, Ramiro
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Limnology, Department of Ecology, Lund University 2007
Subjects:
Online Access:https://lup.lub.lu.se/record/600754
https://portal.research.lu.se/files/5861489/600819.pdf
id ftulundlup:oai:lup.lub.lu.se:9148b70a-1cbc-483b-b9ac-8c325d518932
record_format openpolar
spelling ftulundlup:oai:lup.lub.lu.se:9148b70a-1cbc-483b-b9ac-8c325d518932 2023-05-15T13:59:04+02:00 Microbial evolution: patterns of diversity in aquatic protists Logares, Ramiro 2007 application/pdf https://lup.lub.lu.se/record/600754 https://portal.research.lu.se/files/5861489/600819.pdf eng eng Limnology, Department of Ecology, Lund University https://lup.lub.lu.se/record/600754 urn:isbn:978-91-7105-263-6 https://portal.research.lu.se/files/5861489/600819.pdf info:eu-repo/semantics/openAccess Environmental Sciences Ecology dinoflagellates biodiversity lakes Evolution diversification microbes biogeography thesis/doccomp info:eu-repo/semantics/doctoralThesis text 2007 ftulundlup 2023-02-01T23:31:47Z Little is known about how microbes diversify in nature. In contrast to the more studied multicellular organisms, microbes can have a) huge population sizes, b) high reproductive rates and c) long-distance dispersal. These characteristics can affect their tempo and mode of diversification in ways that still need to be understood. For instance, it has been proposed that the huge population sizes and the potential for long-distance dispersal in microbes would restrain their overall diversification, generating a pattern consisting of relatively few cosmopolitan species in global scales. However, recent genetic data started to reveal that a) microbial biodiversity is much higher than previously estimated, b) that there are cosmopolitan as well as endemic species and, c) that vast diversity can be hidden within identical morphologies (reviewed in Paper 1). In Paper 2, I investigated one of the first cases of two phenotypically differentiated dinoflagellate (unicellular eukaryote) morphospecies which are genetically very similar. These two species were found to be part of a lineage which has diversified recently in evolutionary terms (Paper 3). I proposed that this diversification can be associated to transitions between environments, since the dinoflagellate lineage in question encompasses marine, brackish and freshwater strains/species from the Arctic, Antarctic and Europe. In Paper 4, several dinoflagellate species were investigated in marine-derived coastal Antarctic lakes. These lakes have evolved in 6,000 years from originally marine conditions into salinities ranging from freshwater to hypersaline. It was found that most dinoflagellate species present in these lakes have a marine origin, and that the new environmental conditions in the lakes have likely promoted the extinction of most colonizing dinoflagellates, leaving behind a few species. In Paper 5, I explored the genetic diversity within Antarctic and European lakes. The results indicated that there is normally a high genetic diversity within lakes, instead ... Doctoral or Postdoctoral Thesis Antarc* Antarctic Arctic Lund University Publications (LUP) Antarctic Arctic
institution Open Polar
collection Lund University Publications (LUP)
op_collection_id ftulundlup
language English
topic Environmental Sciences
Ecology
dinoflagellates
biodiversity
lakes
Evolution
diversification
microbes
biogeography
spellingShingle Environmental Sciences
Ecology
dinoflagellates
biodiversity
lakes
Evolution
diversification
microbes
biogeography
Logares, Ramiro
Microbial evolution: patterns of diversity in aquatic protists
topic_facet Environmental Sciences
Ecology
dinoflagellates
biodiversity
lakes
Evolution
diversification
microbes
biogeography
description Little is known about how microbes diversify in nature. In contrast to the more studied multicellular organisms, microbes can have a) huge population sizes, b) high reproductive rates and c) long-distance dispersal. These characteristics can affect their tempo and mode of diversification in ways that still need to be understood. For instance, it has been proposed that the huge population sizes and the potential for long-distance dispersal in microbes would restrain their overall diversification, generating a pattern consisting of relatively few cosmopolitan species in global scales. However, recent genetic data started to reveal that a) microbial biodiversity is much higher than previously estimated, b) that there are cosmopolitan as well as endemic species and, c) that vast diversity can be hidden within identical morphologies (reviewed in Paper 1). In Paper 2, I investigated one of the first cases of two phenotypically differentiated dinoflagellate (unicellular eukaryote) morphospecies which are genetically very similar. These two species were found to be part of a lineage which has diversified recently in evolutionary terms (Paper 3). I proposed that this diversification can be associated to transitions between environments, since the dinoflagellate lineage in question encompasses marine, brackish and freshwater strains/species from the Arctic, Antarctic and Europe. In Paper 4, several dinoflagellate species were investigated in marine-derived coastal Antarctic lakes. These lakes have evolved in 6,000 years from originally marine conditions into salinities ranging from freshwater to hypersaline. It was found that most dinoflagellate species present in these lakes have a marine origin, and that the new environmental conditions in the lakes have likely promoted the extinction of most colonizing dinoflagellates, leaving behind a few species. In Paper 5, I explored the genetic diversity within Antarctic and European lakes. The results indicated that there is normally a high genetic diversity within lakes, instead ...
format Doctoral or Postdoctoral Thesis
author Logares, Ramiro
author_facet Logares, Ramiro
author_sort Logares, Ramiro
title Microbial evolution: patterns of diversity in aquatic protists
title_short Microbial evolution: patterns of diversity in aquatic protists
title_full Microbial evolution: patterns of diversity in aquatic protists
title_fullStr Microbial evolution: patterns of diversity in aquatic protists
title_full_unstemmed Microbial evolution: patterns of diversity in aquatic protists
title_sort microbial evolution: patterns of diversity in aquatic protists
publisher Limnology, Department of Ecology, Lund University
publishDate 2007
url https://lup.lub.lu.se/record/600754
https://portal.research.lu.se/files/5861489/600819.pdf
geographic Antarctic
Arctic
geographic_facet Antarctic
Arctic
genre Antarc*
Antarctic
Arctic
genre_facet Antarc*
Antarctic
Arctic
op_relation https://lup.lub.lu.se/record/600754
urn:isbn:978-91-7105-263-6
https://portal.research.lu.se/files/5861489/600819.pdf
op_rights info:eu-repo/semantics/openAccess
_version_ 1766267431252131840