Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain : Regional patterns and uncertainties

The regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of d...

Full description

Bibliographic Details
Published in:Global Change Biology
Main Authors: Virkkala, Anna Maria, Aalto, Juha, Rogers, Brendan M., Tagesson, Torbern, Treat, Claire C., Natali, Susan M., Watts, Jennifer D., Potter, Stefano, Lehtonen, Aleksi, Mauritz, Marguerite, Schuur, Edward A.G., Kochendorfer, John, Zona, Donatella, Oechel, Walter, Kobayashi, Hideki, Humphreys, Elyn, Goeckede, Mathias, Iwata, Hiroki, Lafleur, Peter M., Euskirchen, Eugenie S., Bokhorst, Stef, Marushchak, Maija, Martikainen, Pertti J., Elberling, Bo, Voigt, Carolina, Biasi, Christina, Sonnentag, Oliver, Parmentier, Frans Jan W., Ueyama, Masahito, Celis, Gerardo, St.Louis, Vincent L., Emmerton, Craig A., Peichl, Matthias, Chi, Jinshu, Järveoja, Järvi, Nilsson, Mats B., Oberbauer, Steven F., Torn, Margaret S., Park, Sang Jong, Dolman, Han, Mammarella, Ivan, Chae, Namyi, Poyatos, Rafael, López-Blanco, Efrén, Christensen, Torben Røjle, Kwon, Min Jung, Sachs, Torsten, Holl, David, Luoto, Miska
Format: Article in Journal/Newspaper
Language:English
Published: Wiley-Blackwell 2021
Subjects:
Online Access:https://lup.lub.lu.se/record/5eb7eac8-80c0-4c81-8b3d-6621ae9ad588
https://doi.org/10.1111/gcb.15659
id ftulundlup:oai:lup.lub.lu.se:5eb7eac8-80c0-4c81-8b3d-6621ae9ad588
record_format openpolar
spelling ftulundlup:oai:lup.lub.lu.se:5eb7eac8-80c0-4c81-8b3d-6621ae9ad588 2024-05-19T07:36:44+00:00 Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain : Regional patterns and uncertainties Virkkala, Anna Maria Aalto, Juha Rogers, Brendan M. Tagesson, Torbern Treat, Claire C. Natali, Susan M. Watts, Jennifer D. Potter, Stefano Lehtonen, Aleksi Mauritz, Marguerite Schuur, Edward A.G. Kochendorfer, John Zona, Donatella Oechel, Walter Kobayashi, Hideki Humphreys, Elyn Goeckede, Mathias Iwata, Hiroki Lafleur, Peter M. Euskirchen, Eugenie S. Bokhorst, Stef Marushchak, Maija Martikainen, Pertti J. Elberling, Bo Voigt, Carolina Biasi, Christina Sonnentag, Oliver Parmentier, Frans Jan W. Ueyama, Masahito Celis, Gerardo St.Louis, Vincent L. Emmerton, Craig A. Peichl, Matthias Chi, Jinshu Järveoja, Järvi Nilsson, Mats B. Oberbauer, Steven F. Torn, Margaret S. Park, Sang Jong Dolman, Han Mammarella, Ivan Chae, Namyi Poyatos, Rafael López-Blanco, Efrén Christensen, Torben Røjle Kwon, Min Jung Sachs, Torsten Holl, David Luoto, Miska 2021 https://lup.lub.lu.se/record/5eb7eac8-80c0-4c81-8b3d-6621ae9ad588 https://doi.org/10.1111/gcb.15659 eng eng Wiley-Blackwell https://lup.lub.lu.se/record/5eb7eac8-80c0-4c81-8b3d-6621ae9ad588 http://dx.doi.org/10.1111/gcb.15659 scopus:85107431149 pmid:33913236 Global Change Biology; 27(17), pp 4040-4059 (2021) ISSN: 1354-1013 Earth and Related Environmental Sciences Arctic CO balance empirical greenhouse gas land permafrost remote sensing contributiontojournal/article info:eu-repo/semantics/article text 2021 ftulundlup https://doi.org/10.1111/gcb.15659 2024-04-23T23:58:21Z The regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990–2015 from 148 terrestrial high-latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2) across the high-latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE-focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE −46 and −29 g C m−2 yr−1, respectively) compared to tundra (average annual NEE +10 and −2 g C m−2 yr−1). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high-latitude region was on average an annual CO2 sink during 1990–2015, although uncertainty remains high. Article in Journal/Newspaper Arctic permafrost Tundra Lund University Publications (LUP) Global Change Biology
institution Open Polar
collection Lund University Publications (LUP)
op_collection_id ftulundlup
language English
topic Earth and Related Environmental Sciences
Arctic
CO balance
empirical
greenhouse gas
land
permafrost
remote sensing
spellingShingle Earth and Related Environmental Sciences
Arctic
CO balance
empirical
greenhouse gas
land
permafrost
remote sensing
Virkkala, Anna Maria
Aalto, Juha
Rogers, Brendan M.
Tagesson, Torbern
Treat, Claire C.
Natali, Susan M.
Watts, Jennifer D.
Potter, Stefano
Lehtonen, Aleksi
Mauritz, Marguerite
Schuur, Edward A.G.
Kochendorfer, John
Zona, Donatella
Oechel, Walter
Kobayashi, Hideki
Humphreys, Elyn
Goeckede, Mathias
Iwata, Hiroki
Lafleur, Peter M.
Euskirchen, Eugenie S.
Bokhorst, Stef
Marushchak, Maija
Martikainen, Pertti J.
Elberling, Bo
Voigt, Carolina
Biasi, Christina
Sonnentag, Oliver
Parmentier, Frans Jan W.
Ueyama, Masahito
Celis, Gerardo
St.Louis, Vincent L.
Emmerton, Craig A.
Peichl, Matthias
Chi, Jinshu
Järveoja, Järvi
Nilsson, Mats B.
Oberbauer, Steven F.
Torn, Margaret S.
Park, Sang Jong
Dolman, Han
Mammarella, Ivan
Chae, Namyi
Poyatos, Rafael
López-Blanco, Efrén
Christensen, Torben Røjle
Kwon, Min Jung
Sachs, Torsten
Holl, David
Luoto, Miska
Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain : Regional patterns and uncertainties
topic_facet Earth and Related Environmental Sciences
Arctic
CO balance
empirical
greenhouse gas
land
permafrost
remote sensing
description The regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990–2015 from 148 terrestrial high-latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2) across the high-latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE-focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE −46 and −29 g C m−2 yr−1, respectively) compared to tundra (average annual NEE +10 and −2 g C m−2 yr−1). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high-latitude region was on average an annual CO2 sink during 1990–2015, although uncertainty remains high.
format Article in Journal/Newspaper
author Virkkala, Anna Maria
Aalto, Juha
Rogers, Brendan M.
Tagesson, Torbern
Treat, Claire C.
Natali, Susan M.
Watts, Jennifer D.
Potter, Stefano
Lehtonen, Aleksi
Mauritz, Marguerite
Schuur, Edward A.G.
Kochendorfer, John
Zona, Donatella
Oechel, Walter
Kobayashi, Hideki
Humphreys, Elyn
Goeckede, Mathias
Iwata, Hiroki
Lafleur, Peter M.
Euskirchen, Eugenie S.
Bokhorst, Stef
Marushchak, Maija
Martikainen, Pertti J.
Elberling, Bo
Voigt, Carolina
Biasi, Christina
Sonnentag, Oliver
Parmentier, Frans Jan W.
Ueyama, Masahito
Celis, Gerardo
St.Louis, Vincent L.
Emmerton, Craig A.
Peichl, Matthias
Chi, Jinshu
Järveoja, Järvi
Nilsson, Mats B.
Oberbauer, Steven F.
Torn, Margaret S.
Park, Sang Jong
Dolman, Han
Mammarella, Ivan
Chae, Namyi
Poyatos, Rafael
López-Blanco, Efrén
Christensen, Torben Røjle
Kwon, Min Jung
Sachs, Torsten
Holl, David
Luoto, Miska
author_facet Virkkala, Anna Maria
Aalto, Juha
Rogers, Brendan M.
Tagesson, Torbern
Treat, Claire C.
Natali, Susan M.
Watts, Jennifer D.
Potter, Stefano
Lehtonen, Aleksi
Mauritz, Marguerite
Schuur, Edward A.G.
Kochendorfer, John
Zona, Donatella
Oechel, Walter
Kobayashi, Hideki
Humphreys, Elyn
Goeckede, Mathias
Iwata, Hiroki
Lafleur, Peter M.
Euskirchen, Eugenie S.
Bokhorst, Stef
Marushchak, Maija
Martikainen, Pertti J.
Elberling, Bo
Voigt, Carolina
Biasi, Christina
Sonnentag, Oliver
Parmentier, Frans Jan W.
Ueyama, Masahito
Celis, Gerardo
St.Louis, Vincent L.
Emmerton, Craig A.
Peichl, Matthias
Chi, Jinshu
Järveoja, Järvi
Nilsson, Mats B.
Oberbauer, Steven F.
Torn, Margaret S.
Park, Sang Jong
Dolman, Han
Mammarella, Ivan
Chae, Namyi
Poyatos, Rafael
López-Blanco, Efrén
Christensen, Torben Røjle
Kwon, Min Jung
Sachs, Torsten
Holl, David
Luoto, Miska
author_sort Virkkala, Anna Maria
title Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain : Regional patterns and uncertainties
title_short Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain : Regional patterns and uncertainties
title_full Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain : Regional patterns and uncertainties
title_fullStr Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain : Regional patterns and uncertainties
title_full_unstemmed Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain : Regional patterns and uncertainties
title_sort statistical upscaling of ecosystem co2 fluxes across the terrestrial tundra and boreal domain : regional patterns and uncertainties
publisher Wiley-Blackwell
publishDate 2021
url https://lup.lub.lu.se/record/5eb7eac8-80c0-4c81-8b3d-6621ae9ad588
https://doi.org/10.1111/gcb.15659
genre Arctic
permafrost
Tundra
genre_facet Arctic
permafrost
Tundra
op_source Global Change Biology; 27(17), pp 4040-4059 (2021)
ISSN: 1354-1013
op_relation https://lup.lub.lu.se/record/5eb7eac8-80c0-4c81-8b3d-6621ae9ad588
http://dx.doi.org/10.1111/gcb.15659
scopus:85107431149
pmid:33913236
op_doi https://doi.org/10.1111/gcb.15659
container_title Global Change Biology
_version_ 1799475869891166208