Petrogenesis of the Dunite Peak ophiolite, south-central Yukon, and the distinction between upper-plate and lower-plate settings: A new hypothesis for the late Paleozoic–early Mesozoic tectonic evolution of the Northern Cordillera

Upper-plate and lower-plate settings within subduction zones have distinct geological signatures. Identifying and discriminating between these settings is crucial to the study of accretionary orogens. We applied this distinction to the Northern Cordillera in Yukon, British Columbia, and Alaska, and...

Full description

Bibliographic Details
Published in:GSA Bulletin
Main Authors: Parsons, A, Zagorevski, A, Ryan, J, McClelland, W, Van Staal, C, Coleman, M, Golding, M
Format: Article in Journal/Newspaper
Language:unknown
Published: Geological Society of America 2018
Subjects:
Online Access:https://doi.org/10.1130/B31964.1
https://ora.ox.ac.uk/objects/uuid:ae4db444-d639-485a-94e1-9447701c8e4b
id ftuloxford:oai:ora.ox.ac.uk:uuid:ae4db444-d639-485a-94e1-9447701c8e4b
record_format openpolar
spelling ftuloxford:oai:ora.ox.ac.uk:uuid:ae4db444-d639-485a-94e1-9447701c8e4b 2023-05-15T18:49:03+02:00 Petrogenesis of the Dunite Peak ophiolite, south-central Yukon, and the distinction between upper-plate and lower-plate settings: A new hypothesis for the late Paleozoic–early Mesozoic tectonic evolution of the Northern Cordillera Parsons, A Zagorevski, A Ryan, J McClelland, W Van Staal, C Coleman, M Golding, M 2018-09-05 https://doi.org/10.1130/B31964.1 https://ora.ox.ac.uk/objects/uuid:ae4db444-d639-485a-94e1-9447701c8e4b unknown Geological Society of America doi:10.1130/B31964.1 https://ora.ox.ac.uk/objects/uuid:ae4db444-d639-485a-94e1-9447701c8e4b https://doi.org/10.1130/B31964.1 info:eu-repo/semantics/openAccess Journal article 2018 ftuloxford https://doi.org/10.1130/B31964.1 2022-06-28T20:21:09Z Upper-plate and lower-plate settings within subduction zones have distinct geological signatures. Identifying and discriminating between these settings is crucial to the study of accretionary orogens. We applied this distinction to the Northern Cordillera in Yukon, British Columbia, and Alaska, and we focused on the identification of upper-plate and lower-plate domains during the late Paleozoic to early Mesozoic evolution of the allochthonous Yukon-Tanana terrane, the west Laurentian margin, and the intervening Slide Mountain Ocean. We present new data from the Dunite Peak ophiolite in south-central Yukon, previously interpreted as ocean plate stratigraphy that was obducted from the subducting Slide Mountain Ocean (i.e., lower plate). Whole-rock geochemical and Sm-Nd isotopic analyses, and U-Pb zircon geochronology indicate that the Dunite Peak ophiolite formed in an intra-oceanic suprasubduction-zone setting (i.e., upper plate) with magmatism at 265 ± 4 Ma. We propose that the Dunite Peak ophiolite correlates with other mid-Permian suprasubduction-zone ophiolites of the Slide Mountain terrane, collectively defining the previously unrecognized mid-Permian “Dunite Peak intra-oceanic arc.” This intra-oceanic arc was active from ca. 280 to 260 Ma, located within the Slide Mountain Ocean, between the Yukon-Tanana terrane and west Laurentia. Existence of this arc is incompatible with previous models proposing that accretion of the Yukon-Tanana terrane to Laurentia was facilitated by Permian subduction of the Slide Mountain Ocean beneath the Yukon-Tanana terrane. Our results, combined with existing data sets, suggest that during the mid- to Late Permian (Late Permian = Guadalupian to Lopingian, 272 Ma to 252 Ma), the Yukon-Tanana terrane was subducted eastward beneath the Dunite Peak intra-oceanic arc. Subsequent collision and accretion of the Yukon-Tanana–Dunite Peak composite terrane with Laurentia must have occurred after the Middle Triassic. Article in Journal/Newspaper Alaska Yukon ORA - Oxford University Research Archive Yukon GSA Bulletin 131 1-2 274 298
institution Open Polar
collection ORA - Oxford University Research Archive
op_collection_id ftuloxford
language unknown
description Upper-plate and lower-plate settings within subduction zones have distinct geological signatures. Identifying and discriminating between these settings is crucial to the study of accretionary orogens. We applied this distinction to the Northern Cordillera in Yukon, British Columbia, and Alaska, and we focused on the identification of upper-plate and lower-plate domains during the late Paleozoic to early Mesozoic evolution of the allochthonous Yukon-Tanana terrane, the west Laurentian margin, and the intervening Slide Mountain Ocean. We present new data from the Dunite Peak ophiolite in south-central Yukon, previously interpreted as ocean plate stratigraphy that was obducted from the subducting Slide Mountain Ocean (i.e., lower plate). Whole-rock geochemical and Sm-Nd isotopic analyses, and U-Pb zircon geochronology indicate that the Dunite Peak ophiolite formed in an intra-oceanic suprasubduction-zone setting (i.e., upper plate) with magmatism at 265 ± 4 Ma. We propose that the Dunite Peak ophiolite correlates with other mid-Permian suprasubduction-zone ophiolites of the Slide Mountain terrane, collectively defining the previously unrecognized mid-Permian “Dunite Peak intra-oceanic arc.” This intra-oceanic arc was active from ca. 280 to 260 Ma, located within the Slide Mountain Ocean, between the Yukon-Tanana terrane and west Laurentia. Existence of this arc is incompatible with previous models proposing that accretion of the Yukon-Tanana terrane to Laurentia was facilitated by Permian subduction of the Slide Mountain Ocean beneath the Yukon-Tanana terrane. Our results, combined with existing data sets, suggest that during the mid- to Late Permian (Late Permian = Guadalupian to Lopingian, 272 Ma to 252 Ma), the Yukon-Tanana terrane was subducted eastward beneath the Dunite Peak intra-oceanic arc. Subsequent collision and accretion of the Yukon-Tanana–Dunite Peak composite terrane with Laurentia must have occurred after the Middle Triassic.
format Article in Journal/Newspaper
author Parsons, A
Zagorevski, A
Ryan, J
McClelland, W
Van Staal, C
Coleman, M
Golding, M
spellingShingle Parsons, A
Zagorevski, A
Ryan, J
McClelland, W
Van Staal, C
Coleman, M
Golding, M
Petrogenesis of the Dunite Peak ophiolite, south-central Yukon, and the distinction between upper-plate and lower-plate settings: A new hypothesis for the late Paleozoic–early Mesozoic tectonic evolution of the Northern Cordillera
author_facet Parsons, A
Zagorevski, A
Ryan, J
McClelland, W
Van Staal, C
Coleman, M
Golding, M
author_sort Parsons, A
title Petrogenesis of the Dunite Peak ophiolite, south-central Yukon, and the distinction between upper-plate and lower-plate settings: A new hypothesis for the late Paleozoic–early Mesozoic tectonic evolution of the Northern Cordillera
title_short Petrogenesis of the Dunite Peak ophiolite, south-central Yukon, and the distinction between upper-plate and lower-plate settings: A new hypothesis for the late Paleozoic–early Mesozoic tectonic evolution of the Northern Cordillera
title_full Petrogenesis of the Dunite Peak ophiolite, south-central Yukon, and the distinction between upper-plate and lower-plate settings: A new hypothesis for the late Paleozoic–early Mesozoic tectonic evolution of the Northern Cordillera
title_fullStr Petrogenesis of the Dunite Peak ophiolite, south-central Yukon, and the distinction between upper-plate and lower-plate settings: A new hypothesis for the late Paleozoic–early Mesozoic tectonic evolution of the Northern Cordillera
title_full_unstemmed Petrogenesis of the Dunite Peak ophiolite, south-central Yukon, and the distinction between upper-plate and lower-plate settings: A new hypothesis for the late Paleozoic–early Mesozoic tectonic evolution of the Northern Cordillera
title_sort petrogenesis of the dunite peak ophiolite, south-central yukon, and the distinction between upper-plate and lower-plate settings: a new hypothesis for the late paleozoic–early mesozoic tectonic evolution of the northern cordillera
publisher Geological Society of America
publishDate 2018
url https://doi.org/10.1130/B31964.1
https://ora.ox.ac.uk/objects/uuid:ae4db444-d639-485a-94e1-9447701c8e4b
geographic Yukon
geographic_facet Yukon
genre Alaska
Yukon
genre_facet Alaska
Yukon
op_relation doi:10.1130/B31964.1
https://ora.ox.ac.uk/objects/uuid:ae4db444-d639-485a-94e1-9447701c8e4b
https://doi.org/10.1130/B31964.1
op_rights info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.1130/B31964.1
container_title GSA Bulletin
container_volume 131
container_issue 1-2
container_start_page 274
op_container_end_page 298
_version_ 1766242483169132544