Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica
The future response of the Antarctic ice sheet to rising temperatures remains highly uncertain. A useful period for assessing the sensitivity of Antarctica to warming is the Last Interglacial (LIG) (129 to 116 ky), which experienced warmer polar temperatures and higher global mean sea level (GMSL) (...
Published in: | Proceedings of the National Academy of Sciences |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
National Academy of Sciences
2020
|
Subjects: | |
Online Access: | https://doi.org/10.1073/pnas.1902469117 https://ora.ox.ac.uk/objects/uuid:874587cc-dabd-4507-86d4-72ed555b1c1e |
id |
ftuloxford:oai:ora.ox.ac.uk:uuid:874587cc-dabd-4507-86d4-72ed555b1c1e |
---|---|
record_format |
openpolar |
spelling |
ftuloxford:oai:ora.ox.ac.uk:uuid:874587cc-dabd-4507-86d4-72ed555b1c1e 2024-10-06T13:43:38+00:00 Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica Turney, CSM Fogwill, CJ Golledge, NR McKay, NP van Sebille, E Jones, RT Etheridge, D Rubino, M Thornton, DP Davies, SM Ramsey, CB Thomas, ZA Bird, MI Munksgaard, NC Kohno, M Woodward, J Winter, K Weyrich, LS Rootes, CM Millman, H Albert, PG Rivera, A van Ommen, T Curran, M Moy, A Rahmstorf, S Kawamura, K Hillenbrand, C-D Weber, ME Manning, CJ Young, J Cooper, A 2020-03-05 https://doi.org/10.1073/pnas.1902469117 https://ora.ox.ac.uk/objects/uuid:874587cc-dabd-4507-86d4-72ed555b1c1e eng eng National Academy of Sciences doi:10.1073/pnas.1902469117 https://ora.ox.ac.uk/objects/uuid:874587cc-dabd-4507-86d4-72ed555b1c1e https://doi.org/10.1073/pnas.1902469117 info:eu-repo/semantics/openAccess CC Attribution (CC BY) Journal article 2020 ftuloxford https://doi.org/10.1073/pnas.1902469117 2024-09-06T07:47:38Z The future response of the Antarctic ice sheet to rising temperatures remains highly uncertain. A useful period for assessing the sensitivity of Antarctica to warming is the Last Interglacial (LIG) (129 to 116 ky), which experienced warmer polar temperatures and higher global mean sea level (GMSL) (+6 to 9 m) relative to present day. LIG sea level cannot be fully explained by Greenland Ice Sheet melt (∼2 m), ocean thermal expansion, and melting mountain glaciers (∼1 m), suggesting substantial Antarctic mass loss was initiated by warming of Southern Ocean waters, resulting from a weakening Atlantic meridional overturning circulation in response to North Atlantic surface freshening. Here, we report a blue-ice record of ice sheet and environmental change from the Weddell Sea Embayment at the periphery of the marine-based West Antarctic Ice Sheet (WAIS), which is underlain by major methane hydrate reserves. Constrained by a widespread volcanic horizon and supported by ancient microbial DNA analyses, we provide evidence for substantial mass loss across the Weddell Sea Embayment during the LIG, most likely driven by ocean warming and associated with destabilization of subglacial hydrates. Ice sheet modeling supports this interpretation and suggests that millennial-scale warming of the Southern Ocean could have triggered a multimeter rise in global sea levels. Our data indicate that Antarctica is highly vulnerable to projected increases in ocean temperatures and may drive ice–climate feedbacks that further amplify warming. Article in Journal/Newspaper Antarc* Antarctic Antarctica Greenland Ice Sheet Methane hydrate North Atlantic Southern Ocean Weddell Sea ORA - Oxford University Research Archive Antarctic Greenland Southern Ocean The Antarctic Weddell Weddell Sea West Antarctic Ice Sheet Proceedings of the National Academy of Sciences 117 8 3996 4006 |
institution |
Open Polar |
collection |
ORA - Oxford University Research Archive |
op_collection_id |
ftuloxford |
language |
English |
description |
The future response of the Antarctic ice sheet to rising temperatures remains highly uncertain. A useful period for assessing the sensitivity of Antarctica to warming is the Last Interglacial (LIG) (129 to 116 ky), which experienced warmer polar temperatures and higher global mean sea level (GMSL) (+6 to 9 m) relative to present day. LIG sea level cannot be fully explained by Greenland Ice Sheet melt (∼2 m), ocean thermal expansion, and melting mountain glaciers (∼1 m), suggesting substantial Antarctic mass loss was initiated by warming of Southern Ocean waters, resulting from a weakening Atlantic meridional overturning circulation in response to North Atlantic surface freshening. Here, we report a blue-ice record of ice sheet and environmental change from the Weddell Sea Embayment at the periphery of the marine-based West Antarctic Ice Sheet (WAIS), which is underlain by major methane hydrate reserves. Constrained by a widespread volcanic horizon and supported by ancient microbial DNA analyses, we provide evidence for substantial mass loss across the Weddell Sea Embayment during the LIG, most likely driven by ocean warming and associated with destabilization of subglacial hydrates. Ice sheet modeling supports this interpretation and suggests that millennial-scale warming of the Southern Ocean could have triggered a multimeter rise in global sea levels. Our data indicate that Antarctica is highly vulnerable to projected increases in ocean temperatures and may drive ice–climate feedbacks that further amplify warming. |
format |
Article in Journal/Newspaper |
author |
Turney, CSM Fogwill, CJ Golledge, NR McKay, NP van Sebille, E Jones, RT Etheridge, D Rubino, M Thornton, DP Davies, SM Ramsey, CB Thomas, ZA Bird, MI Munksgaard, NC Kohno, M Woodward, J Winter, K Weyrich, LS Rootes, CM Millman, H Albert, PG Rivera, A van Ommen, T Curran, M Moy, A Rahmstorf, S Kawamura, K Hillenbrand, C-D Weber, ME Manning, CJ Young, J Cooper, A |
spellingShingle |
Turney, CSM Fogwill, CJ Golledge, NR McKay, NP van Sebille, E Jones, RT Etheridge, D Rubino, M Thornton, DP Davies, SM Ramsey, CB Thomas, ZA Bird, MI Munksgaard, NC Kohno, M Woodward, J Winter, K Weyrich, LS Rootes, CM Millman, H Albert, PG Rivera, A van Ommen, T Curran, M Moy, A Rahmstorf, S Kawamura, K Hillenbrand, C-D Weber, ME Manning, CJ Young, J Cooper, A Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica |
author_facet |
Turney, CSM Fogwill, CJ Golledge, NR McKay, NP van Sebille, E Jones, RT Etheridge, D Rubino, M Thornton, DP Davies, SM Ramsey, CB Thomas, ZA Bird, MI Munksgaard, NC Kohno, M Woodward, J Winter, K Weyrich, LS Rootes, CM Millman, H Albert, PG Rivera, A van Ommen, T Curran, M Moy, A Rahmstorf, S Kawamura, K Hillenbrand, C-D Weber, ME Manning, CJ Young, J Cooper, A |
author_sort |
Turney, CSM |
title |
Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica |
title_short |
Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica |
title_full |
Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica |
title_fullStr |
Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica |
title_full_unstemmed |
Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica |
title_sort |
early last interglacial ocean warming drove substantial ice mass loss from antarctica |
publisher |
National Academy of Sciences |
publishDate |
2020 |
url |
https://doi.org/10.1073/pnas.1902469117 https://ora.ox.ac.uk/objects/uuid:874587cc-dabd-4507-86d4-72ed555b1c1e |
geographic |
Antarctic Greenland Southern Ocean The Antarctic Weddell Weddell Sea West Antarctic Ice Sheet |
geographic_facet |
Antarctic Greenland Southern Ocean The Antarctic Weddell Weddell Sea West Antarctic Ice Sheet |
genre |
Antarc* Antarctic Antarctica Greenland Ice Sheet Methane hydrate North Atlantic Southern Ocean Weddell Sea |
genre_facet |
Antarc* Antarctic Antarctica Greenland Ice Sheet Methane hydrate North Atlantic Southern Ocean Weddell Sea |
op_relation |
doi:10.1073/pnas.1902469117 https://ora.ox.ac.uk/objects/uuid:874587cc-dabd-4507-86d4-72ed555b1c1e https://doi.org/10.1073/pnas.1902469117 |
op_rights |
info:eu-repo/semantics/openAccess CC Attribution (CC BY) |
op_doi |
https://doi.org/10.1073/pnas.1902469117 |
container_title |
Proceedings of the National Academy of Sciences |
container_volume |
117 |
container_issue |
8 |
container_start_page |
3996 |
op_container_end_page |
4006 |
_version_ |
1812182163533070336 |