Large-scale glaciation on Earth and on Mars

This habilitation thesis combines ten publications of the author which are concerned with the large-scale dynamics and thermodynamics of ice sheets and ice shelves. Ice sheets are ice masses with a minimum area of 50,000 km2 which rest on solid land, whereas ice shelves consist of floating ice nouri...

Full description

Bibliographic Details
Main Author: Greve, Ralf
Format: Thesis
Language:English
Published: 2008
Subjects:
Ice
Online Access:http://tuprints.ulb.tu-darmstadt.de/816/
https://tuprints.ulb.tu-darmstadt.de/816/1/Greve_2000_Habil_1.pdf
https://tuprints.ulb.tu-darmstadt.de/816/2/Greve_2000_Habil_2.pdf
https://tuprints.ulb.tu-darmstadt.de/816/3/Greve_2000_Habil_3.pdf
id ftulbdarmstadt:oai:tuprints.ulb.tu-darmstadt.de:816
record_format openpolar
spelling ftulbdarmstadt:oai:tuprints.ulb.tu-darmstadt.de:816 2023-11-12T04:17:50+01:00 Large-scale glaciation on Earth and on Mars Greve, Ralf 2008-10-17 application/pdf http://tuprints.ulb.tu-darmstadt.de/816/ https://tuprints.ulb.tu-darmstadt.de/816/1/Greve_2000_Habil_1.pdf https://tuprints.ulb.tu-darmstadt.de/816/2/Greve_2000_Habil_2.pdf https://tuprints.ulb.tu-darmstadt.de/816/3/Greve_2000_Habil_3.pdf eng en eng https://tuprints.ulb.tu-darmstadt.de/816/1/Greve_2000_Habil_1.pdf https://tuprints.ulb.tu-darmstadt.de/816/2/Greve_2000_Habil_2.pdf https://tuprints.ulb.tu-darmstadt.de/816/3/Greve_2000_Habil_3.pdf Greve, Ralf <http://tuprints.ulb.tu-darmstadt.de/view/person/Greve=3ARalf=3A=3A.html> (2008)Large-scale glaciation on Earth and on Mars. Technische Universität Darmstadt, 2000Habilitation, Secondary publication In Copyright info:eu-repo/semantics/openAccess Habilitation PeerReviewed info:eu-repo/semantics/other 2008 ftulbdarmstadt 2023-10-29T23:58:04Z This habilitation thesis combines ten publications of the author which are concerned with the large-scale dynamics and thermodynamics of ice sheets and ice shelves. Ice sheets are ice masses with a minimum area of 50,000 km2 which rest on solid land, whereas ice shelves consist of floating ice nourished by the mass flow from an adjacent ice sheet, typically stabilized by large bays. Together, they represent the major part of the cryosphere of the Earth. Furthermore, ice on Earth occurs in the form of glaciers and small ice caps, sea ice, lake ice, river ice, snow and ground ice (permafrost). For Mars, it has long been known that both poles are covered by ice caps which grow and shrink in the course of the seasons, and which leave small residual caps during the respective summer. Recent space-probe missions have revealed that the residual caps are ice sheets in the above sense. Articles 1 and 2 lay the theoretical foundation. Dynamic/thermodynamic model equations for ice sheets and ice shelves are developed, subjected to a scaling analysis, and simplified by assuming small aspect (thickness to width) ratios. The resulting systems of equations are refered to as shallow ice approximation (SIA) and shallow shelf approximation (SSA), respectively. For ice sheets, the computer model SICOPOLIS (SImulation COde for POLythermal Ice Sheets) is introduced, which solves the SIA equations prognostically and three-dimensionally with finite difference methods. Articles 3, 4, 5 deal with paleoclimatic simulations of the Greenland ice sheet over two climatic cycles with the ice-sheet model SICOPOLIS driven by the paleo-temperature record of the GRIP ice core, the attention being focused on the region around Summit, the highest point of the Greenland ice sheet. Simulations which aim at predicting the response of the Greenland ice sheet to future greenhouse warming are the objective of Article 6. For Article 7, the ice-sheet model SICOPOLIS is modified such that it can be applied to model studies of the paleo-glaciation of the ... Thesis Greenland GRIP Ice ice core Ice Sheet Ice Shelves permafrost Sea ice TU Darmstadt: tuprints Greenland
institution Open Polar
collection TU Darmstadt: tuprints
op_collection_id ftulbdarmstadt
language English
description This habilitation thesis combines ten publications of the author which are concerned with the large-scale dynamics and thermodynamics of ice sheets and ice shelves. Ice sheets are ice masses with a minimum area of 50,000 km2 which rest on solid land, whereas ice shelves consist of floating ice nourished by the mass flow from an adjacent ice sheet, typically stabilized by large bays. Together, they represent the major part of the cryosphere of the Earth. Furthermore, ice on Earth occurs in the form of glaciers and small ice caps, sea ice, lake ice, river ice, snow and ground ice (permafrost). For Mars, it has long been known that both poles are covered by ice caps which grow and shrink in the course of the seasons, and which leave small residual caps during the respective summer. Recent space-probe missions have revealed that the residual caps are ice sheets in the above sense. Articles 1 and 2 lay the theoretical foundation. Dynamic/thermodynamic model equations for ice sheets and ice shelves are developed, subjected to a scaling analysis, and simplified by assuming small aspect (thickness to width) ratios. The resulting systems of equations are refered to as shallow ice approximation (SIA) and shallow shelf approximation (SSA), respectively. For ice sheets, the computer model SICOPOLIS (SImulation COde for POLythermal Ice Sheets) is introduced, which solves the SIA equations prognostically and three-dimensionally with finite difference methods. Articles 3, 4, 5 deal with paleoclimatic simulations of the Greenland ice sheet over two climatic cycles with the ice-sheet model SICOPOLIS driven by the paleo-temperature record of the GRIP ice core, the attention being focused on the region around Summit, the highest point of the Greenland ice sheet. Simulations which aim at predicting the response of the Greenland ice sheet to future greenhouse warming are the objective of Article 6. For Article 7, the ice-sheet model SICOPOLIS is modified such that it can be applied to model studies of the paleo-glaciation of the ...
format Thesis
author Greve, Ralf
spellingShingle Greve, Ralf
Large-scale glaciation on Earth and on Mars
author_facet Greve, Ralf
author_sort Greve, Ralf
title Large-scale glaciation on Earth and on Mars
title_short Large-scale glaciation on Earth and on Mars
title_full Large-scale glaciation on Earth and on Mars
title_fullStr Large-scale glaciation on Earth and on Mars
title_full_unstemmed Large-scale glaciation on Earth and on Mars
title_sort large-scale glaciation on earth and on mars
publishDate 2008
url http://tuprints.ulb.tu-darmstadt.de/816/
https://tuprints.ulb.tu-darmstadt.de/816/1/Greve_2000_Habil_1.pdf
https://tuprints.ulb.tu-darmstadt.de/816/2/Greve_2000_Habil_2.pdf
https://tuprints.ulb.tu-darmstadt.de/816/3/Greve_2000_Habil_3.pdf
geographic Greenland
geographic_facet Greenland
genre Greenland
GRIP
Ice
ice core
Ice Sheet
Ice Shelves
permafrost
Sea ice
genre_facet Greenland
GRIP
Ice
ice core
Ice Sheet
Ice Shelves
permafrost
Sea ice
op_relation https://tuprints.ulb.tu-darmstadt.de/816/1/Greve_2000_Habil_1.pdf
https://tuprints.ulb.tu-darmstadt.de/816/2/Greve_2000_Habil_2.pdf
https://tuprints.ulb.tu-darmstadt.de/816/3/Greve_2000_Habil_3.pdf
Greve, Ralf <http://tuprints.ulb.tu-darmstadt.de/view/person/Greve=3ARalf=3A=3A.html> (2008)Large-scale glaciation on Earth and on Mars. Technische Universität Darmstadt, 2000Habilitation, Secondary publication
op_rights In Copyright
info:eu-repo/semantics/openAccess
_version_ 1782334612949696512