ISMIP6 Antarctica:A multi-model ensemble of the Antarctic ice sheet evolution over the 21st century
Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ic...
Published in: | The Cryosphere |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://research.ulapland.fi/fi/publications/d5b3373f-4f94-4f2a-81f8-51419f737b54 https://doi.org/10.5194/tc-14-3033-2020 http://www.scopus.com/inward/record.url?scp=85092296071&partnerID=8YFLogxK http://www.scopus.com/inward/citedby.url?scp=85092296071&partnerID=8YFLogxK |
id |
ftulaplandcdispu:oai:lacris.ulapland.fi:publications/d5b3373f-4f94-4f2a-81f8-51419f737b54 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
LaCRIS - University of Lapland Current Research System |
op_collection_id |
ftulaplandcdispu |
language |
English |
topic |
/dk/atira/pure/person/fieldofscience2010/1/17/1 name=Geosciences |
spellingShingle |
/dk/atira/pure/person/fieldofscience2010/1/17/1 name=Geosciences Seroussi, Hélène Nowicki, Sophie Payne, Antony J. Goelzer, Heiko Lipscomb, William H. Abe-Ouchi, Ayako Agosta, Cécile Albrecht, Torsten Asay-Davis, Xylar Barthel, Alice Calov, Reinhard Cullather, Richard Dumas, Christophe Galton-Fenzi, Benjamin K. Gladstone, Rupert Golledge, Nicholas R. Gregory, Jonathan M. Greve, Ralf Hattermann, Tore Hoffman, Matthew J. Humbert, Angelika Huybrechts, Philippe Jourdain, Nicolas C. Kleiner, Thomas Larour, Eric Leguy, Gunter R. Lowry, Daniel P. Little, Chistopher M. Morlighem, Mathieu Pattyn, Frank Pelle, Tyler Price, Stephen F. Quiquet, Aurélien Reese, Ronja Schlegel, Nicole Jeanne Shepherd, Andrew Simon, Erika Smith, Robin S. Straneo, Fiammetta Sun, Sainan Trusel, Luke D. Breedam, Jonas Van Van De Wal, Roderik S.W. Winkelmann, Ricarda Zhao, Chen Zhang, Tong Zwinger, Thomas ISMIP6 Antarctica:A multi-model ensemble of the Antarctic ice sheet evolution over the 21st century |
topic_facet |
/dk/atira/pure/person/fieldofscience2010/1/17/1 name=Geosciences |
description |
Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015-2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between 7:8 and 30.0 cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar to presentday conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between 6:1 and 8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt ... |
format |
Article in Journal/Newspaper |
author |
Seroussi, Hélène Nowicki, Sophie Payne, Antony J. Goelzer, Heiko Lipscomb, William H. Abe-Ouchi, Ayako Agosta, Cécile Albrecht, Torsten Asay-Davis, Xylar Barthel, Alice Calov, Reinhard Cullather, Richard Dumas, Christophe Galton-Fenzi, Benjamin K. Gladstone, Rupert Golledge, Nicholas R. Gregory, Jonathan M. Greve, Ralf Hattermann, Tore Hoffman, Matthew J. Humbert, Angelika Huybrechts, Philippe Jourdain, Nicolas C. Kleiner, Thomas Larour, Eric Leguy, Gunter R. Lowry, Daniel P. Little, Chistopher M. Morlighem, Mathieu Pattyn, Frank Pelle, Tyler Price, Stephen F. Quiquet, Aurélien Reese, Ronja Schlegel, Nicole Jeanne Shepherd, Andrew Simon, Erika Smith, Robin S. Straneo, Fiammetta Sun, Sainan Trusel, Luke D. Breedam, Jonas Van Van De Wal, Roderik S.W. Winkelmann, Ricarda Zhao, Chen Zhang, Tong Zwinger, Thomas |
author_facet |
Seroussi, Hélène Nowicki, Sophie Payne, Antony J. Goelzer, Heiko Lipscomb, William H. Abe-Ouchi, Ayako Agosta, Cécile Albrecht, Torsten Asay-Davis, Xylar Barthel, Alice Calov, Reinhard Cullather, Richard Dumas, Christophe Galton-Fenzi, Benjamin K. Gladstone, Rupert Golledge, Nicholas R. Gregory, Jonathan M. Greve, Ralf Hattermann, Tore Hoffman, Matthew J. Humbert, Angelika Huybrechts, Philippe Jourdain, Nicolas C. Kleiner, Thomas Larour, Eric Leguy, Gunter R. Lowry, Daniel P. Little, Chistopher M. Morlighem, Mathieu Pattyn, Frank Pelle, Tyler Price, Stephen F. Quiquet, Aurélien Reese, Ronja Schlegel, Nicole Jeanne Shepherd, Andrew Simon, Erika Smith, Robin S. Straneo, Fiammetta Sun, Sainan Trusel, Luke D. Breedam, Jonas Van Van De Wal, Roderik S.W. Winkelmann, Ricarda Zhao, Chen Zhang, Tong Zwinger, Thomas |
author_sort |
Seroussi, Hélène |
title |
ISMIP6 Antarctica:A multi-model ensemble of the Antarctic ice sheet evolution over the 21st century |
title_short |
ISMIP6 Antarctica:A multi-model ensemble of the Antarctic ice sheet evolution over the 21st century |
title_full |
ISMIP6 Antarctica:A multi-model ensemble of the Antarctic ice sheet evolution over the 21st century |
title_fullStr |
ISMIP6 Antarctica:A multi-model ensemble of the Antarctic ice sheet evolution over the 21st century |
title_full_unstemmed |
ISMIP6 Antarctica:A multi-model ensemble of the Antarctic ice sheet evolution over the 21st century |
title_sort |
ismip6 antarctica:a multi-model ensemble of the antarctic ice sheet evolution over the 21st century |
publishDate |
2020 |
url |
https://research.ulapland.fi/fi/publications/d5b3373f-4f94-4f2a-81f8-51419f737b54 https://doi.org/10.5194/tc-14-3033-2020 http://www.scopus.com/inward/record.url?scp=85092296071&partnerID=8YFLogxK http://www.scopus.com/inward/citedby.url?scp=85092296071&partnerID=8YFLogxK |
genre |
Antarc* Antarctic Antarctica East Antarctica Ice Sheet Ice Shelf Ice Shelves |
genre_facet |
Antarc* Antarctic Antarctica East Antarctica Ice Sheet Ice Shelf Ice Shelves |
op_source |
Seroussi , H , Nowicki , S , Payne , A J , Goelzer , H , Lipscomb , W H , Abe-Ouchi , A , Agosta , C , Albrecht , T , Asay-Davis , X , Barthel , A , Calov , R , Cullather , R , Dumas , C , Galton-Fenzi , B K , Gladstone , R , Golledge , N R , Gregory , J M , Greve , R , Hattermann , T , Hoffman , M J , Humbert , A , Huybrechts , P , Jourdain , N C , Kleiner , T , Larour , E , Leguy , G R , Lowry , D P , Little , C M , Morlighem , M , Pattyn , F , Pelle , T , Price , S F , Quiquet , A , Reese , R , Schlegel , N J , Shepherd , A , Simon , E , Smith , R S , Straneo , F , Sun , S , Trusel , L D , Breedam , J V , Van De Wal , R S W , Winkelmann , R , Zhao , C , Zhang , T & Zwinger , T 2020 , ' ISMIP6 Antarctica : A multi-model ensemble of the Antarctic ice sheet evolution over the 21st century ' , Cryosphere , vol. 14 , no. 9 , 14-3033-2020 , pp. 3033-3070 . https://doi.org/10.5194/tc-14-3033-2020 |
op_relation |
https://research.ulapland.fi/fi/publications/d5b3373f-4f94-4f2a-81f8-51419f737b54 |
op_rights |
info:eu-repo/semantics/openAccess |
op_doi |
https://doi.org/10.5194/tc-14-3033-2020 |
container_title |
The Cryosphere |
container_volume |
14 |
container_issue |
9 |
container_start_page |
3033 |
op_container_end_page |
3070 |
_version_ |
1810495505157849088 |
spelling |
ftulaplandcdispu:oai:lacris.ulapland.fi:publications/d5b3373f-4f94-4f2a-81f8-51419f737b54 2024-09-15T17:47:01+00:00 ISMIP6 Antarctica:A multi-model ensemble of the Antarctic ice sheet evolution over the 21st century Seroussi, Hélène Nowicki, Sophie Payne, Antony J. Goelzer, Heiko Lipscomb, William H. Abe-Ouchi, Ayako Agosta, Cécile Albrecht, Torsten Asay-Davis, Xylar Barthel, Alice Calov, Reinhard Cullather, Richard Dumas, Christophe Galton-Fenzi, Benjamin K. Gladstone, Rupert Golledge, Nicholas R. Gregory, Jonathan M. Greve, Ralf Hattermann, Tore Hoffman, Matthew J. Humbert, Angelika Huybrechts, Philippe Jourdain, Nicolas C. Kleiner, Thomas Larour, Eric Leguy, Gunter R. Lowry, Daniel P. Little, Chistopher M. Morlighem, Mathieu Pattyn, Frank Pelle, Tyler Price, Stephen F. Quiquet, Aurélien Reese, Ronja Schlegel, Nicole Jeanne Shepherd, Andrew Simon, Erika Smith, Robin S. Straneo, Fiammetta Sun, Sainan Trusel, Luke D. Breedam, Jonas Van Van De Wal, Roderik S.W. Winkelmann, Ricarda Zhao, Chen Zhang, Tong Zwinger, Thomas 2020-09-17 https://research.ulapland.fi/fi/publications/d5b3373f-4f94-4f2a-81f8-51419f737b54 https://doi.org/10.5194/tc-14-3033-2020 http://www.scopus.com/inward/record.url?scp=85092296071&partnerID=8YFLogxK http://www.scopus.com/inward/citedby.url?scp=85092296071&partnerID=8YFLogxK eng eng https://research.ulapland.fi/fi/publications/d5b3373f-4f94-4f2a-81f8-51419f737b54 info:eu-repo/semantics/openAccess Seroussi , H , Nowicki , S , Payne , A J , Goelzer , H , Lipscomb , W H , Abe-Ouchi , A , Agosta , C , Albrecht , T , Asay-Davis , X , Barthel , A , Calov , R , Cullather , R , Dumas , C , Galton-Fenzi , B K , Gladstone , R , Golledge , N R , Gregory , J M , Greve , R , Hattermann , T , Hoffman , M J , Humbert , A , Huybrechts , P , Jourdain , N C , Kleiner , T , Larour , E , Leguy , G R , Lowry , D P , Little , C M , Morlighem , M , Pattyn , F , Pelle , T , Price , S F , Quiquet , A , Reese , R , Schlegel , N J , Shepherd , A , Simon , E , Smith , R S , Straneo , F , Sun , S , Trusel , L D , Breedam , J V , Van De Wal , R S W , Winkelmann , R , Zhao , C , Zhang , T & Zwinger , T 2020 , ' ISMIP6 Antarctica : A multi-model ensemble of the Antarctic ice sheet evolution over the 21st century ' , Cryosphere , vol. 14 , no. 9 , 14-3033-2020 , pp. 3033-3070 . https://doi.org/10.5194/tc-14-3033-2020 /dk/atira/pure/person/fieldofscience2010/1/17/1 name=Geosciences article 2020 ftulaplandcdispu https://doi.org/10.5194/tc-14-3033-2020 2024-07-01T23:35:27Z Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015-2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between 7:8 and 30.0 cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar to presentday conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between 6:1 and 8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt ... Article in Journal/Newspaper Antarc* Antarctic Antarctica East Antarctica Ice Sheet Ice Shelf Ice Shelves LaCRIS - University of Lapland Current Research System The Cryosphere 14 9 3033 3070 |