Cryogenic carbon cycling at an Icelandic glacier

Glaciers and ice caps are recognised as an important component of the global carbon cycle. Carbon within glacial systems exists in organic and inorganic forms, across supraglacial, englacial and subglacial realms. It is often difficult to detach cryospheric carbon cycling from hydrology, with the tr...

Full description

Bibliographic Details
Main Author: Burns, Rebecca Kate
Format: Thesis
Language:English
Published: Lancaster University 2016
Subjects:
Online Access:https://eprints.lancs.ac.uk/id/eprint/85961/
https://eprints.lancs.ac.uk/id/eprint/85961/1/Burns_Thesis_FINAL.pdf
https://doi.org/10.17635/lancaster/thesis/2
id ftulancaster:oai:eprints.lancs.ac.uk:85961
record_format openpolar
spelling ftulancaster:oai:eprints.lancs.ac.uk:85961 2023-08-27T04:10:22+02:00 Cryogenic carbon cycling at an Icelandic glacier Burns, Rebecca Kate 2016 application/pdf https://eprints.lancs.ac.uk/id/eprint/85961/ https://eprints.lancs.ac.uk/id/eprint/85961/1/Burns_Thesis_FINAL.pdf https://doi.org/10.17635/lancaster/thesis/2 en eng Lancaster University https://eprints.lancs.ac.uk/id/eprint/85961/1/Burns_Thesis_FINAL.pdf Burns, Rebecca Kate (2016) Cryogenic carbon cycling at an Icelandic glacier. PhD thesis, UNSPECIFIED. creative_commons_attribution_noncommercial_noderivatives_4_0_international_license Thesis NonPeerReviewed 2016 ftulancaster https://doi.org/10.17635/lancaster/thesis/2 2023-08-03T22:31:23Z Glaciers and ice caps are recognised as an important component of the global carbon cycle. Carbon within glacial systems exists in organic and inorganic forms, across supraglacial, englacial and subglacial realms. It is often difficult to detach cryospheric carbon cycling from hydrology, with the transfer of carbon between glacial inventories relying upon meltwater flows. Classical glacial hydrology consists of distributed drainage delivering delayed flow meltwaters, throughout the accumulation season, superseded by quick flow, aerated channelized drainage during increased ablation. It is upon this template that most existing studies have addressed the dynamics of carbon within glaciated catchments. However, Icelandic glacial systems provide an opportunity to investigate the role of subglacial volcanism in driving carbon dynamics. Hydrochemical properties of Sόlheimajökull bulk meltwaters indicate untraditional redox conditions, with discharge of reduced, anoxic meltwaters in Summer, when expansion of subglacial drainage intersects the Katla geothermal zone. This unique hydrological regime generates profound effects upon the solute flux from the glacier, particularly with regard to the carbon budget. Dissolved inorganic carbon dynamics are dominated by weathering of basaltic bedrocks and accessory hydrothermal calcites, fuelled by subglacial geothermal proton supply. Widespread basal anoxia during summer facilitates methanogenesis resulting in large quantities of methane being discharged from beneath the glacier (flux range between 9,179 to 22,551 tonnes per year). Evidence suggests subglacial microbial acetoclastic methanogenesis is responsible with δ13C and δD CH4 values of ~60‰ and -320‰ respectively, supported by laboratory identification of methanogenesis in Sόlheimajökull subglacial sediments. The organic counterpart to the carbon cycle is invoked to serve as the energy source for microbial metabolism. Such direct measurements of subglacial methane have rarely been achieved at contemporary ice margins. ... Thesis Katla Lancaster University: Lancaster Eprints Katla ENVELOPE(-19.062,-19.062,63.631,63.631)
institution Open Polar
collection Lancaster University: Lancaster Eprints
op_collection_id ftulancaster
language English
description Glaciers and ice caps are recognised as an important component of the global carbon cycle. Carbon within glacial systems exists in organic and inorganic forms, across supraglacial, englacial and subglacial realms. It is often difficult to detach cryospheric carbon cycling from hydrology, with the transfer of carbon between glacial inventories relying upon meltwater flows. Classical glacial hydrology consists of distributed drainage delivering delayed flow meltwaters, throughout the accumulation season, superseded by quick flow, aerated channelized drainage during increased ablation. It is upon this template that most existing studies have addressed the dynamics of carbon within glaciated catchments. However, Icelandic glacial systems provide an opportunity to investigate the role of subglacial volcanism in driving carbon dynamics. Hydrochemical properties of Sόlheimajökull bulk meltwaters indicate untraditional redox conditions, with discharge of reduced, anoxic meltwaters in Summer, when expansion of subglacial drainage intersects the Katla geothermal zone. This unique hydrological regime generates profound effects upon the solute flux from the glacier, particularly with regard to the carbon budget. Dissolved inorganic carbon dynamics are dominated by weathering of basaltic bedrocks and accessory hydrothermal calcites, fuelled by subglacial geothermal proton supply. Widespread basal anoxia during summer facilitates methanogenesis resulting in large quantities of methane being discharged from beneath the glacier (flux range between 9,179 to 22,551 tonnes per year). Evidence suggests subglacial microbial acetoclastic methanogenesis is responsible with δ13C and δD CH4 values of ~60‰ and -320‰ respectively, supported by laboratory identification of methanogenesis in Sόlheimajökull subglacial sediments. The organic counterpart to the carbon cycle is invoked to serve as the energy source for microbial metabolism. Such direct measurements of subglacial methane have rarely been achieved at contemporary ice margins. ...
format Thesis
author Burns, Rebecca Kate
spellingShingle Burns, Rebecca Kate
Cryogenic carbon cycling at an Icelandic glacier
author_facet Burns, Rebecca Kate
author_sort Burns, Rebecca Kate
title Cryogenic carbon cycling at an Icelandic glacier
title_short Cryogenic carbon cycling at an Icelandic glacier
title_full Cryogenic carbon cycling at an Icelandic glacier
title_fullStr Cryogenic carbon cycling at an Icelandic glacier
title_full_unstemmed Cryogenic carbon cycling at an Icelandic glacier
title_sort cryogenic carbon cycling at an icelandic glacier
publisher Lancaster University
publishDate 2016
url https://eprints.lancs.ac.uk/id/eprint/85961/
https://eprints.lancs.ac.uk/id/eprint/85961/1/Burns_Thesis_FINAL.pdf
https://doi.org/10.17635/lancaster/thesis/2
long_lat ENVELOPE(-19.062,-19.062,63.631,63.631)
geographic Katla
geographic_facet Katla
genre Katla
genre_facet Katla
op_relation https://eprints.lancs.ac.uk/id/eprint/85961/1/Burns_Thesis_FINAL.pdf
Burns, Rebecca Kate (2016) Cryogenic carbon cycling at an Icelandic glacier. PhD thesis, UNSPECIFIED.
op_rights creative_commons_attribution_noncommercial_noderivatives_4_0_international_license
op_doi https://doi.org/10.17635/lancaster/thesis/2
_version_ 1775352346962821120