Vegetation-cloud feedbacks to future vegetation changes in the Arctic regions

This study investigates future changes in the Arctic region and vegetation-cloud feedbacks simulated using the National Center for Atmospheric Research Community Atmosphere Model Version 3 coupled with a mixed layer ocean model. Impacts of future greening of the Arctic region are tested using altere...

Full description

Bibliographic Details
Published in:Climate Dynamics
Main Authors: Cho, Mee-Hyun, Yang, Ah-Ryeon, Baek, Eun-Hyuk, Kang, Sarah M., Jeong, Su-Jong, Kim, Jin Young, Kim, Baek-Min
Format: Article in Journal/Newspaper
Language:unknown
Published: SPRINGER 2018
Subjects:
Online Access:https://scholarworks.unist.ac.kr/handle/201301/22829
https://doi.org/10.1007/s00382-017-3840-5
https://link.springer.com/article/10.1007/s00382-017-3840-5
id ftuisanist:oai:scholarworks.unist.ac.kr:201301/22829
record_format openpolar
spelling ftuisanist:oai:scholarworks.unist.ac.kr:201301/22829 2023-05-15T13:10:51+02:00 Vegetation-cloud feedbacks to future vegetation changes in the Arctic regions Cho, Mee-Hyun Yang, Ah-Ryeon Baek, Eun-Hyuk Kang, Sarah M. Jeong, Su-Jong Kim, Jin Young Kim, Baek-Min 2018-05 https://scholarworks.unist.ac.kr/handle/201301/22829 https://doi.org/10.1007/s00382-017-3840-5 https://link.springer.com/article/10.1007/s00382-017-3840-5 ?????? unknown SPRINGER CLIMATE DYNAMICS, v.50, no.9-10, pp.3745 - 3755 0930-7575 https://scholarworks.unist.ac.kr/handle/201301/22829 1107 29242 2-s2.0-85026552770 000429650700034 doi:10.1007/s00382-017-3840-5 https://link.springer.com/article/10.1007/s00382-017-3840-5 ARTICLE ART 2018 ftuisanist https://doi.org/10.1007/s00382-017-3840-5 2022-05-15T05:29:34Z This study investigates future changes in the Arctic region and vegetation-cloud feedbacks simulated using the National Center for Atmospheric Research Community Atmosphere Model Version 3 coupled with a mixed layer ocean model. Impacts of future greening of the Arctic region are tested using altered surface boundary conditions for hypothetical vegetation distributions: (1) grasslands poleward of 60??N replaced by boreal forests and (2) both grasslands and shrubs replaced by boreal forests. Surface energy budget analysis reveals that future greening induces a considerable surface warming effect locally and warming is largely driven by an increase in short wave radiation. Both upward and downward shortwave radiation contribute to positive surface warming: upward shortwave radiation decreases mainly due to the decreased surface albedo (a darker surface) and downward shortwave radiation increases due to reduced cloud cover. The contribution of downward shortwave radiation at surface due to cloud cover reduction is larger than the contribution from surface albedo alone. The increased roughness length also transported surface fluxes to upper layer more efficiently and induce more heating and dry lower atmosphere. A relatively smaller increase in water vapor compared to the large increase in low-level air temperature in the simulation reduces relative humidity and results in reduced cloud cover. Therefore, vegetation-cloud feedbacks induced from land cover change significantly amplify Arctic warming. In addition to previously suggested feedback mechanisms, we propose that the vegetation-cloud feedback should be considered as one of major components that will give rise to an additional positive feedback to Arctic amplification. Article in Journal/Newspaper albedo Arctic ScholarWorks@UNIST (Ulsan National Institute of Science and Technology) Arctic Climate Dynamics 50 9-10 3745 3755
institution Open Polar
collection ScholarWorks@UNIST (Ulsan National Institute of Science and Technology)
op_collection_id ftuisanist
language unknown
description This study investigates future changes in the Arctic region and vegetation-cloud feedbacks simulated using the National Center for Atmospheric Research Community Atmosphere Model Version 3 coupled with a mixed layer ocean model. Impacts of future greening of the Arctic region are tested using altered surface boundary conditions for hypothetical vegetation distributions: (1) grasslands poleward of 60??N replaced by boreal forests and (2) both grasslands and shrubs replaced by boreal forests. Surface energy budget analysis reveals that future greening induces a considerable surface warming effect locally and warming is largely driven by an increase in short wave radiation. Both upward and downward shortwave radiation contribute to positive surface warming: upward shortwave radiation decreases mainly due to the decreased surface albedo (a darker surface) and downward shortwave radiation increases due to reduced cloud cover. The contribution of downward shortwave radiation at surface due to cloud cover reduction is larger than the contribution from surface albedo alone. The increased roughness length also transported surface fluxes to upper layer more efficiently and induce more heating and dry lower atmosphere. A relatively smaller increase in water vapor compared to the large increase in low-level air temperature in the simulation reduces relative humidity and results in reduced cloud cover. Therefore, vegetation-cloud feedbacks induced from land cover change significantly amplify Arctic warming. In addition to previously suggested feedback mechanisms, we propose that the vegetation-cloud feedback should be considered as one of major components that will give rise to an additional positive feedback to Arctic amplification.
format Article in Journal/Newspaper
author Cho, Mee-Hyun
Yang, Ah-Ryeon
Baek, Eun-Hyuk
Kang, Sarah M.
Jeong, Su-Jong
Kim, Jin Young
Kim, Baek-Min
spellingShingle Cho, Mee-Hyun
Yang, Ah-Ryeon
Baek, Eun-Hyuk
Kang, Sarah M.
Jeong, Su-Jong
Kim, Jin Young
Kim, Baek-Min
Vegetation-cloud feedbacks to future vegetation changes in the Arctic regions
author_facet Cho, Mee-Hyun
Yang, Ah-Ryeon
Baek, Eun-Hyuk
Kang, Sarah M.
Jeong, Su-Jong
Kim, Jin Young
Kim, Baek-Min
author_sort Cho, Mee-Hyun
title Vegetation-cloud feedbacks to future vegetation changes in the Arctic regions
title_short Vegetation-cloud feedbacks to future vegetation changes in the Arctic regions
title_full Vegetation-cloud feedbacks to future vegetation changes in the Arctic regions
title_fullStr Vegetation-cloud feedbacks to future vegetation changes in the Arctic regions
title_full_unstemmed Vegetation-cloud feedbacks to future vegetation changes in the Arctic regions
title_sort vegetation-cloud feedbacks to future vegetation changes in the arctic regions
publisher SPRINGER
publishDate 2018
url https://scholarworks.unist.ac.kr/handle/201301/22829
https://doi.org/10.1007/s00382-017-3840-5
https://link.springer.com/article/10.1007/s00382-017-3840-5
geographic Arctic
geographic_facet Arctic
genre albedo
Arctic
genre_facet albedo
Arctic
op_relation CLIMATE DYNAMICS, v.50, no.9-10, pp.3745 - 3755
0930-7575
https://scholarworks.unist.ac.kr/handle/201301/22829
1107
29242
2-s2.0-85026552770
000429650700034
doi:10.1007/s00382-017-3840-5
https://link.springer.com/article/10.1007/s00382-017-3840-5
op_doi https://doi.org/10.1007/s00382-017-3840-5
container_title Climate Dynamics
container_volume 50
container_issue 9-10
container_start_page 3745
op_container_end_page 3755
_version_ 1766244780232146944