Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification

Marine pCO2 enrichment via ocean acidification (OA), upwelling and release from carbon capture and storage (CCS) facilities is projected to have devastating impacts on marine biomineralisers and the services they provide. However, empirical studies using stable endpoint pCO2 concentrations find spec...

Full description

Bibliographic Details
Published in:Global Change Biology
Main Authors: Kamenos, Nicholas A., Burdett, Heidi L., Aloisi, Elena, Findlay, Helen S., Martin, Sophie, Longbone, Charlotte, Dunn, Jonathan, Widdicombe, Stephen, Calosi, Piero
Format: Article in Journal/Newspaper
Language:English
Published: Wiley-Blackwell 2013
Subjects:
Online Access:http://eprints.gla.ac.uk/84611/
http://eprints.gla.ac.uk/84611/1/84611.pdf
https://doi.org/10.1111/gcb.12351
id ftuglasgow:oai:eprints.gla.ac.uk:84611
record_format openpolar
spelling ftuglasgow:oai:eprints.gla.ac.uk:84611 2023-05-15T17:50:55+02:00 Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification Kamenos, Nicholas A. Burdett, Heidi L. Aloisi, Elena Findlay, Helen S. Martin, Sophie Longbone, Charlotte Dunn, Jonathan Widdicombe, Stephen Calosi, Piero 2013-12-01 text http://eprints.gla.ac.uk/84611/ http://eprints.gla.ac.uk/84611/1/84611.pdf https://doi.org/10.1111/gcb.12351 en eng Wiley-Blackwell http://eprints.gla.ac.uk/84611/1/84611.pdf Kamenos, N. A. <http://eprints.gla.ac.uk/view/author/9996.html> , Burdett, H. L. <http://eprints.gla.ac.uk/view/author/21357.html>, Aloisi, E., Findlay, H. S., Martin, S., Longbone, C., Dunn, J., Widdicombe, S. and Calosi, P. (2013) Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification. Global Change Biology <http://eprints.gla.ac.uk/view/journal_volume/Global_Change_Biology.html>, 19(12), pp. 3621-3628. (doi:10.1111/gcb.12351 <http://dx.doi.org/10.1111/gcb.12351>) cc_by CC-BY QE Geology QK Botany QL Zoology Articles PeerReviewed 2013 ftuglasgow https://doi.org/10.1111/gcb.12351 2021-09-23T23:00:31Z Marine pCO2 enrichment via ocean acidification (OA), upwelling and release from carbon capture and storage (CCS) facilities is projected to have devastating impacts on marine biomineralisers and the services they provide. However, empirical studies using stable endpoint pCO2 concentrations find species exhibit variable biological and geochemical responses rather than the expected negative patterns. In addition, the carbonate chemistry of many marine systems is now being observed to be more variable than previously thought. To underpin more robust projections of future OA impacts on marine biomineralisers and their role in ecosystem service provision, we investigate coralline algal responses to realistically variable scenarios of marine pCO2 enrichment. Coralline algae are important in ecosystem function; providing habitats and nursery areas, hosting high biodiversity, stabilizing reef structures and contributing to the carbon cycle. Red coralline marine algae were exposed for 80-days to one of three pH treatments: (1) current pH (control), (2) low pH (7.7) representing OA change and (3) an abrupt drop to low pH (7.7) representing the higher rates of pH change observed at natural vent systems, in areas of upwelling and during CCS releases. We demonstrate that red coralline algae respond differently to the rate and the magnitude of pH change induced by pCO2 enrichment. At low pH, coralline algae survived by increasing their calcification rates. However, when the change to low pH occurred at a fast rate we detected, using Raman spectroscopy, molecular bonding weaknesses in the calcite skeleton, with evidence of molecular positional disorder. This suggests that, while coralline algae will continue to calcify, they may be structurally weakened, putting at risk the ecosystem services they provide. Notwithstanding evolutionary adaptation, the ability of coralline algae to cope with OA may thus be determined primarily by the rate, rather than magnitude, at which pCO2 enrichment occurs. Article in Journal/Newspaper Ocean acidification University of Glasgow: Enlighten - Publications Global Change Biology 19 12 3621 3628
institution Open Polar
collection University of Glasgow: Enlighten - Publications
op_collection_id ftuglasgow
language English
topic QE Geology
QK Botany
QL Zoology
spellingShingle QE Geology
QK Botany
QL Zoology
Kamenos, Nicholas A.
Burdett, Heidi L.
Aloisi, Elena
Findlay, Helen S.
Martin, Sophie
Longbone, Charlotte
Dunn, Jonathan
Widdicombe, Stephen
Calosi, Piero
Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification
topic_facet QE Geology
QK Botany
QL Zoology
description Marine pCO2 enrichment via ocean acidification (OA), upwelling and release from carbon capture and storage (CCS) facilities is projected to have devastating impacts on marine biomineralisers and the services they provide. However, empirical studies using stable endpoint pCO2 concentrations find species exhibit variable biological and geochemical responses rather than the expected negative patterns. In addition, the carbonate chemistry of many marine systems is now being observed to be more variable than previously thought. To underpin more robust projections of future OA impacts on marine biomineralisers and their role in ecosystem service provision, we investigate coralline algal responses to realistically variable scenarios of marine pCO2 enrichment. Coralline algae are important in ecosystem function; providing habitats and nursery areas, hosting high biodiversity, stabilizing reef structures and contributing to the carbon cycle. Red coralline marine algae were exposed for 80-days to one of three pH treatments: (1) current pH (control), (2) low pH (7.7) representing OA change and (3) an abrupt drop to low pH (7.7) representing the higher rates of pH change observed at natural vent systems, in areas of upwelling and during CCS releases. We demonstrate that red coralline algae respond differently to the rate and the magnitude of pH change induced by pCO2 enrichment. At low pH, coralline algae survived by increasing their calcification rates. However, when the change to low pH occurred at a fast rate we detected, using Raman spectroscopy, molecular bonding weaknesses in the calcite skeleton, with evidence of molecular positional disorder. This suggests that, while coralline algae will continue to calcify, they may be structurally weakened, putting at risk the ecosystem services they provide. Notwithstanding evolutionary adaptation, the ability of coralline algae to cope with OA may thus be determined primarily by the rate, rather than magnitude, at which pCO2 enrichment occurs.
format Article in Journal/Newspaper
author Kamenos, Nicholas A.
Burdett, Heidi L.
Aloisi, Elena
Findlay, Helen S.
Martin, Sophie
Longbone, Charlotte
Dunn, Jonathan
Widdicombe, Stephen
Calosi, Piero
author_facet Kamenos, Nicholas A.
Burdett, Heidi L.
Aloisi, Elena
Findlay, Helen S.
Martin, Sophie
Longbone, Charlotte
Dunn, Jonathan
Widdicombe, Stephen
Calosi, Piero
author_sort Kamenos, Nicholas A.
title Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification
title_short Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification
title_full Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification
title_fullStr Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification
title_full_unstemmed Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification
title_sort coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification
publisher Wiley-Blackwell
publishDate 2013
url http://eprints.gla.ac.uk/84611/
http://eprints.gla.ac.uk/84611/1/84611.pdf
https://doi.org/10.1111/gcb.12351
genre Ocean acidification
genre_facet Ocean acidification
op_relation http://eprints.gla.ac.uk/84611/1/84611.pdf
Kamenos, N. A. <http://eprints.gla.ac.uk/view/author/9996.html> , Burdett, H. L. <http://eprints.gla.ac.uk/view/author/21357.html>, Aloisi, E., Findlay, H. S., Martin, S., Longbone, C., Dunn, J., Widdicombe, S. and Calosi, P. (2013) Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification. Global Change Biology <http://eprints.gla.ac.uk/view/journal_volume/Global_Change_Biology.html>, 19(12), pp. 3621-3628. (doi:10.1111/gcb.12351 <http://dx.doi.org/10.1111/gcb.12351>)
op_rights cc_by
op_rightsnorm CC-BY
op_doi https://doi.org/10.1111/gcb.12351
container_title Global Change Biology
container_volume 19
container_issue 12
container_start_page 3621
op_container_end_page 3628
_version_ 1766157868628705280