Wind field and sex constrain the flight speeds of central-place foraging albatrosses

By extracting energy from the highly dynamic wind and wave fields that typify pelagic habitats, albatrosses are able to proceed almost exclusively by gliding flight. Although energetic costs of gliding are low, enabling breeding albatrosses to forage hundreds to thousands of kilometers from their co...

Full description

Bibliographic Details
Published in:Ecological Monographs
Main Authors: Wakefield, Ewan D., Phillips, Richard A., Matthiopoulos, Jason, Fukuda, Akira, Higuchi, Hiroyoshi, Marshall, Gareth J., Trathan, Philip N.
Format: Article in Journal/Newspaper
Language:English
Published: Ecological Society of America 2009
Subjects:
Online Access:https://eprints.gla.ac.uk/78394/
https://eprints.gla.ac.uk/78394/1/78394.pdf
https://doi.org/10.1890/07-2111.1
Description
Summary:By extracting energy from the highly dynamic wind and wave fields that typify pelagic habitats, albatrosses are able to proceed almost exclusively by gliding flight. Although energetic costs of gliding are low, enabling breeding albatrosses to forage hundreds to thousands of kilometers from their colonies, these and time costs vary with relative wind direction. This causes albatrosses in some areas to route provisioning trips to avoid headwind flight, potentially limiting habitat accessibility during the breeding season. In addition, because female albatrosses have lower wing loadings than males, it has been argued that they are better adapted to flight in light winds, leading to sexual segregation of foraging areas. We used satellite telemetry and immersion logger data to quantify the effects of relative wind speed, sex, breeding stage, and trip stage on the ground speeds (Vg) of four species of Southern Ocean albatrosses breeding at South Georgia. Vg was linearly related to the wind speed component in the direction of flight (Vwf), its effect being greatest on Wandering Albatrosses Diomedea exulans, followed by Black-browed Albatrosses Thalassarche melanophrys, Light-mantled Sooty Albatrosses Phoebatria palpebrata, and Gray-headed Albatrosses T. chrysostoma. Ground speeds at Vwf = 0 were similar to airspeeds predicted by aerodynamic theory and were higher in males than in females. However, we found no evidence that this led to sexual segregation, as males and females experienced comparable wind speeds during foraging trips. Black-browed, Gray-headed, and Light-mantled Sooty Albatrosses did not engage in direct, uninterrupted bouts of flight on moonless nights, but Wandering Albatrosses attained comparable Vg night and day, regardless of lunar phase. Relative flight direction was more important in determining Vg than absolute wind speed. When birds were less constrained in the middle stage of foraging trips, all species flew predominantly across the wind. However, in some instances, commuting birds encountered ...