Deglacial history of the West Antarctic Ice Sheet in the western Amundsen Sea Embayment
The AmundsenSeaEmbayment (ASE) drains approximately 35% of the WestAntarcticIceSheet (WAIS) and is one of the most rapidly changing parts of the cryosphere. In order to predict future icesheet behaviour, modellers require long-term records of ice-sheet melting to constrain and build confidence in th...
Published in: | Quaternary Science Reviews |
---|---|
Main Authors: | , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
2011
|
Subjects: | |
Online Access: | http://eprints.gla.ac.uk/67302/ |
id |
ftuglasgow:oai:eprints.gla.ac.uk:67302 |
---|---|
record_format |
openpolar |
spelling |
ftuglasgow:oai:eprints.gla.ac.uk:67302 2023-05-15T13:24:19+02:00 Deglacial history of the West Antarctic Ice Sheet in the western Amundsen Sea Embayment Smith, J.A. Hillenbrand, C.D. Kuhn, G. Larter, R.D. Graham, A.G.C. Erhmann, W. Moreton, S. Forwick, M. 2011-03 http://eprints.gla.ac.uk/67302/ unknown Smith, J.A., Hillenbrand, C.D., Kuhn, G., Larter, R.D., Graham, A.G.C., Erhmann, W., Moreton, S. <http://eprints.gla.ac.uk/view/author/11570.html> and Forwick, M. (2011) Deglacial history of the West Antarctic Ice Sheet in the western Amundsen Sea Embayment. Quaternary Science Reviews <http://eprints.gla.ac.uk/view/journal_volume/Quaternary_Science_Reviews.html>, 30(5-6), pp. 488-505. (doi:10.1016/j.quascirev.2010.11.020 <http://dx.doi.org/10.1016/j.quascirev.2010.11.020>) Articles PeerReviewed 2011 ftuglasgow https://doi.org/10.1016/j.quascirev.2010.11.020 2021-09-23T22:45:40Z The AmundsenSeaEmbayment (ASE) drains approximately 35% of the WestAntarcticIceSheet (WAIS) and is one of the most rapidly changing parts of the cryosphere. In order to predict future icesheet behaviour, modellers require long-term records of ice-sheet melting to constrain and build confidence in their simulations. Here, we present detailed marine geological and radiocarbon data along three palaeo-ice stream tributary troughs in the western ASE to establish vital information on the timing of deglaciation of the WAIS since the Last Glacial Maximum (LGM). We have undertaken multi-proxy analyses of the cores (core description, shear strength, x-radiographs, magnetic susceptibility, wet bulk density, total organic carbon/nitrogen, carbonate content and clay mineral analyses) in order to: (1) characterise the sedimentological facies and depositional environments; and (2) identify the horizon(s) in each core that would yield the most reliable age for deglaciation. In accordance with previous studies we identify three key facies, which offer the most reliable stratigraphies for dating deglaciation by recording the transition from a grounded icesheet to open marine environments. These facies are: i) subglacial, ii) proximal grounding line, and iii) seasonal open marine. In addition, we incorporate ages from other facies (e.g., glaciomarine diamictons deposited at some distance from the grounding line, such as glaciogenic debris flows and iceberg-rafted diamictons and turbates) into our deglacial model. In total, we have dated 78 samples (mainly the acid insoluble organic (AIO) fraction, but also calcareous foraminifers), which include 63 downcore and 15 surface samples. Through careful sample selection prior to dating, we have established a robust deglacial chronology for this sector of the WAIS. Our data show that deglaciation of the western ASE was probably underway as early as 22,351 calibrated years before present (cal yr BP), reaching the mid-shelf by 13,837 cal yr BP and the inner shelf to within c.10–12 km of the present ice shelf front between 12,618 and 10,072 cal yr BP. The deglacial steps in the western ASE broadly coincide with the rapid rises in sea-level associated with global meltwater pulses 1a and 1b, although given the potential dating uncertainty, additional, more precise ages are required before these findings can be fully substantiated. Finally, we show that the rate of ice-sheet retreat increased across the deep (up to1600 m) basins of the inner shelf, highlighting the importance of reverse slope and pinning points in accelerated phases of deglaciation. Article in Journal/Newspaper Amundsen Sea Antarc* Antarctic Ice Sheet Ice Shelf Iceberg* University of Glasgow: Enlighten - Publications Antarctic Amundsen Sea West Antarctic Ice Sheet Quaternary Science Reviews 30 5-6 488 505 |
institution |
Open Polar |
collection |
University of Glasgow: Enlighten - Publications |
op_collection_id |
ftuglasgow |
language |
unknown |
description |
The AmundsenSeaEmbayment (ASE) drains approximately 35% of the WestAntarcticIceSheet (WAIS) and is one of the most rapidly changing parts of the cryosphere. In order to predict future icesheet behaviour, modellers require long-term records of ice-sheet melting to constrain and build confidence in their simulations. Here, we present detailed marine geological and radiocarbon data along three palaeo-ice stream tributary troughs in the western ASE to establish vital information on the timing of deglaciation of the WAIS since the Last Glacial Maximum (LGM). We have undertaken multi-proxy analyses of the cores (core description, shear strength, x-radiographs, magnetic susceptibility, wet bulk density, total organic carbon/nitrogen, carbonate content and clay mineral analyses) in order to: (1) characterise the sedimentological facies and depositional environments; and (2) identify the horizon(s) in each core that would yield the most reliable age for deglaciation. In accordance with previous studies we identify three key facies, which offer the most reliable stratigraphies for dating deglaciation by recording the transition from a grounded icesheet to open marine environments. These facies are: i) subglacial, ii) proximal grounding line, and iii) seasonal open marine. In addition, we incorporate ages from other facies (e.g., glaciomarine diamictons deposited at some distance from the grounding line, such as glaciogenic debris flows and iceberg-rafted diamictons and turbates) into our deglacial model. In total, we have dated 78 samples (mainly the acid insoluble organic (AIO) fraction, but also calcareous foraminifers), which include 63 downcore and 15 surface samples. Through careful sample selection prior to dating, we have established a robust deglacial chronology for this sector of the WAIS. Our data show that deglaciation of the western ASE was probably underway as early as 22,351 calibrated years before present (cal yr BP), reaching the mid-shelf by 13,837 cal yr BP and the inner shelf to within c.10–12 km of the present ice shelf front between 12,618 and 10,072 cal yr BP. The deglacial steps in the western ASE broadly coincide with the rapid rises in sea-level associated with global meltwater pulses 1a and 1b, although given the potential dating uncertainty, additional, more precise ages are required before these findings can be fully substantiated. Finally, we show that the rate of ice-sheet retreat increased across the deep (up to1600 m) basins of the inner shelf, highlighting the importance of reverse slope and pinning points in accelerated phases of deglaciation. |
format |
Article in Journal/Newspaper |
author |
Smith, J.A. Hillenbrand, C.D. Kuhn, G. Larter, R.D. Graham, A.G.C. Erhmann, W. Moreton, S. Forwick, M. |
spellingShingle |
Smith, J.A. Hillenbrand, C.D. Kuhn, G. Larter, R.D. Graham, A.G.C. Erhmann, W. Moreton, S. Forwick, M. Deglacial history of the West Antarctic Ice Sheet in the western Amundsen Sea Embayment |
author_facet |
Smith, J.A. Hillenbrand, C.D. Kuhn, G. Larter, R.D. Graham, A.G.C. Erhmann, W. Moreton, S. Forwick, M. |
author_sort |
Smith, J.A. |
title |
Deglacial history of the West Antarctic Ice Sheet in the western Amundsen Sea Embayment |
title_short |
Deglacial history of the West Antarctic Ice Sheet in the western Amundsen Sea Embayment |
title_full |
Deglacial history of the West Antarctic Ice Sheet in the western Amundsen Sea Embayment |
title_fullStr |
Deglacial history of the West Antarctic Ice Sheet in the western Amundsen Sea Embayment |
title_full_unstemmed |
Deglacial history of the West Antarctic Ice Sheet in the western Amundsen Sea Embayment |
title_sort |
deglacial history of the west antarctic ice sheet in the western amundsen sea embayment |
publishDate |
2011 |
url |
http://eprints.gla.ac.uk/67302/ |
geographic |
Antarctic Amundsen Sea West Antarctic Ice Sheet |
geographic_facet |
Antarctic Amundsen Sea West Antarctic Ice Sheet |
genre |
Amundsen Sea Antarc* Antarctic Ice Sheet Ice Shelf Iceberg* |
genre_facet |
Amundsen Sea Antarc* Antarctic Ice Sheet Ice Shelf Iceberg* |
op_relation |
Smith, J.A., Hillenbrand, C.D., Kuhn, G., Larter, R.D., Graham, A.G.C., Erhmann, W., Moreton, S. <http://eprints.gla.ac.uk/view/author/11570.html> and Forwick, M. (2011) Deglacial history of the West Antarctic Ice Sheet in the western Amundsen Sea Embayment. Quaternary Science Reviews <http://eprints.gla.ac.uk/view/journal_volume/Quaternary_Science_Reviews.html>, 30(5-6), pp. 488-505. (doi:10.1016/j.quascirev.2010.11.020 <http://dx.doi.org/10.1016/j.quascirev.2010.11.020>) |
op_doi |
https://doi.org/10.1016/j.quascirev.2010.11.020 |
container_title |
Quaternary Science Reviews |
container_volume |
30 |
container_issue |
5-6 |
container_start_page |
488 |
op_container_end_page |
505 |
_version_ |
1766378759807565824 |