Double-digest RAD sequencing using Ion Proton semiconductor platform (ddRADseq-ion) with nonmodel organisms
Research in evolutionary biology involving nonmodel organisms is rapidly shifting from using traditional molecular markers such as mtDNA and microsatellites to higher throughput SNP genotyping methodologies to address questions in population genetics, phylogenetics and genetic mapping. Restriction s...
Published in: | Molecular Ecology Resources |
---|---|
Main Authors: | , , , |
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
John Wiley & Sons Ltd.
2015
|
Subjects: | |
Online Access: | https://eprints.gla.ac.uk/110595/ |
id |
ftuglasgow:oai:eprints.gla.ac.uk:110595 |
---|---|
record_format |
openpolar |
spelling |
ftuglasgow:oai:eprints.gla.ac.uk:110595 2023-05-15T14:30:11+02:00 Double-digest RAD sequencing using Ion Proton semiconductor platform (ddRADseq-ion) with nonmodel organisms Recknagel, Hans Jacobs, Arne Herzyk, Pawel Elmer, Kathryn R. 2015-11 https://eprints.gla.ac.uk/110595/ unknown John Wiley & Sons Ltd. Recknagel, H. <http://eprints.gla.ac.uk/view/author/29454.html> , Jacobs, A., Herzyk, P. <http://eprints.gla.ac.uk/view/author/10349.html> and Elmer, K. R. <http://eprints.gla.ac.uk/view/author/29070.html> (2015) Double-digest RAD sequencing using Ion Proton semiconductor platform (ddRADseq-ion) with nonmodel organisms. Molecular Ecology Resources <https://eprints.gla.ac.uk/view/journal_volume/Molecular_Ecology_Resources.html>, 15(6), pp. 1316-1329. (doi:10.1111/1755-0998.12406 <https://doi.org/10.1111/1755-0998.12406>) (PMID:25808755) Articles PeerReviewed 2015 ftuglasgow https://doi.org/10.1111/1755-0998.12406 2022-09-22T22:12:41Z Research in evolutionary biology involving nonmodel organisms is rapidly shifting from using traditional molecular markers such as mtDNA and microsatellites to higher throughput SNP genotyping methodologies to address questions in population genetics, phylogenetics and genetic mapping. Restriction site associated DNA sequencing (RAD sequencing or RADseq) has become an established method for SNP genotyping on Illumina sequencing platforms. Here, we developed a protocol and adapters for double-digest RAD sequencing for Ion Torrent (Life Technologies; Ion Proton, Ion PGM) semiconductor sequencing. We sequenced thirteen genomic libraries of three different nonmodel vertebrate species on Ion Proton with PI chips: Arctic charr Salvelinus alpinus, European whitefish Coregonus lavaretus and common lizard Zootoca vivipara. This resulted in ~962 million single-end reads overall and a mean of ~74 million reads per library. We filtered the genomic data using Stacks, a bioinformatic tool to process RAD sequencing data. On average, we obtained ~11 000 polymorphic loci per library of 6–30 individuals. We validate our new method by technical and biological replication, by reconstructing phylogenetic relationships, and using a hybrid genetic cross to track genomic variants. Finally, we discuss the differences between using the different sequencing platforms in the context of RAD sequencing, assessing possible advantages and disadvantages. We show that our protocol can be used for Ion semiconductor sequencing platforms for the rapid and cost-effective generation of variable and reproducible genetic markers. Article in Journal/Newspaper Arctic charr Arctic Salvelinus alpinus University of Glasgow: Enlighten - Publications Arctic Molecular Ecology Resources 15 6 1316 1329 |
institution |
Open Polar |
collection |
University of Glasgow: Enlighten - Publications |
op_collection_id |
ftuglasgow |
language |
unknown |
description |
Research in evolutionary biology involving nonmodel organisms is rapidly shifting from using traditional molecular markers such as mtDNA and microsatellites to higher throughput SNP genotyping methodologies to address questions in population genetics, phylogenetics and genetic mapping. Restriction site associated DNA sequencing (RAD sequencing or RADseq) has become an established method for SNP genotyping on Illumina sequencing platforms. Here, we developed a protocol and adapters for double-digest RAD sequencing for Ion Torrent (Life Technologies; Ion Proton, Ion PGM) semiconductor sequencing. We sequenced thirteen genomic libraries of three different nonmodel vertebrate species on Ion Proton with PI chips: Arctic charr Salvelinus alpinus, European whitefish Coregonus lavaretus and common lizard Zootoca vivipara. This resulted in ~962 million single-end reads overall and a mean of ~74 million reads per library. We filtered the genomic data using Stacks, a bioinformatic tool to process RAD sequencing data. On average, we obtained ~11 000 polymorphic loci per library of 6–30 individuals. We validate our new method by technical and biological replication, by reconstructing phylogenetic relationships, and using a hybrid genetic cross to track genomic variants. Finally, we discuss the differences between using the different sequencing platforms in the context of RAD sequencing, assessing possible advantages and disadvantages. We show that our protocol can be used for Ion semiconductor sequencing platforms for the rapid and cost-effective generation of variable and reproducible genetic markers. |
format |
Article in Journal/Newspaper |
author |
Recknagel, Hans Jacobs, Arne Herzyk, Pawel Elmer, Kathryn R. |
spellingShingle |
Recknagel, Hans Jacobs, Arne Herzyk, Pawel Elmer, Kathryn R. Double-digest RAD sequencing using Ion Proton semiconductor platform (ddRADseq-ion) with nonmodel organisms |
author_facet |
Recknagel, Hans Jacobs, Arne Herzyk, Pawel Elmer, Kathryn R. |
author_sort |
Recknagel, Hans |
title |
Double-digest RAD sequencing using Ion Proton semiconductor platform (ddRADseq-ion) with nonmodel organisms |
title_short |
Double-digest RAD sequencing using Ion Proton semiconductor platform (ddRADseq-ion) with nonmodel organisms |
title_full |
Double-digest RAD sequencing using Ion Proton semiconductor platform (ddRADseq-ion) with nonmodel organisms |
title_fullStr |
Double-digest RAD sequencing using Ion Proton semiconductor platform (ddRADseq-ion) with nonmodel organisms |
title_full_unstemmed |
Double-digest RAD sequencing using Ion Proton semiconductor platform (ddRADseq-ion) with nonmodel organisms |
title_sort |
double-digest rad sequencing using ion proton semiconductor platform (ddradseq-ion) with nonmodel organisms |
publisher |
John Wiley & Sons Ltd. |
publishDate |
2015 |
url |
https://eprints.gla.ac.uk/110595/ |
geographic |
Arctic |
geographic_facet |
Arctic |
genre |
Arctic charr Arctic Salvelinus alpinus |
genre_facet |
Arctic charr Arctic Salvelinus alpinus |
op_relation |
Recknagel, H. <http://eprints.gla.ac.uk/view/author/29454.html> , Jacobs, A., Herzyk, P. <http://eprints.gla.ac.uk/view/author/10349.html> and Elmer, K. R. <http://eprints.gla.ac.uk/view/author/29070.html> (2015) Double-digest RAD sequencing using Ion Proton semiconductor platform (ddRADseq-ion) with nonmodel organisms. Molecular Ecology Resources <https://eprints.gla.ac.uk/view/journal_volume/Molecular_Ecology_Resources.html>, 15(6), pp. 1316-1329. (doi:10.1111/1755-0998.12406 <https://doi.org/10.1111/1755-0998.12406>) (PMID:25808755) |
op_doi |
https://doi.org/10.1111/1755-0998.12406 |
container_title |
Molecular Ecology Resources |
container_volume |
15 |
container_issue |
6 |
container_start_page |
1316 |
op_container_end_page |
1329 |
_version_ |
1766304074233282560 |