Microbial community drivers of PK/NRP gene diversity in selected global soils

BackgroundThe emergence of antibiotic-resistant pathogens has created an urgent need for novel antimicrobial treatments. Advances in next-generation sequencing have opened new frontiers for discovery programmes for natural products allowing the exploitation of a larger fraction of the microbial comm...

Full description

Bibliographic Details
Published in:Microbiome
Main Authors: Borsetto, C., Amos, G.C.A., Nunes da Rocha, Ulisses, Mitchell, A.L., Finn, R.D., Laidi, R.F., Vallin, C., Pearce, D.A., Newsham, K.K., Wellington, E.M.H.
Format: Article in Journal/Newspaper
Language:English
Published: Biomed Central, London 2019
Subjects:
PKS
Online Access:https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=21920
https://doi.org/10.1186/s40168-019-0692-8
id ftufz:oai:ufz.de:21920
record_format openpolar
spelling ftufz:oai:ufz.de:21920 2023-12-10T09:42:05+01:00 Microbial community drivers of PK/NRP gene diversity in selected global soils Borsetto, C. Amos, G.C.A. Nunes da Rocha, Ulisses Mitchell, A.L. Finn, R.D. Laidi, R.F. Vallin, C. Pearce, D.A. Newsham, K.K. Wellington, E.M.H. 2019-05-22 application/pdf https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=21920 https://doi.org/10.1186/s40168-019-0692-8 en eng Biomed Central, London Microbiome 7;; art. 78 https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=21920 https://dx.doi.org/10.1186/s40168-019-0692-8 info:eu-repo/semantics/openAccess ISSN: 2049-2618 16S rRNA gene PKS NRPS Natural product BGCs Soil Biogeography Endemicity Antarctica info:eu-repo/semantics/article https://purl.org/dc/dcmitype/Text 2019 ftufz https://doi.org/10.1186/s40168-019-0692-8 2023-11-12T23:35:36Z BackgroundThe emergence of antibiotic-resistant pathogens has created an urgent need for novel antimicrobial treatments. Advances in next-generation sequencing have opened new frontiers for discovery programmes for natural products allowing the exploitation of a larger fraction of the microbial community. Polyketide (PK) and non-ribosomal pepetide (NRP) natural products have been reported to be related to compounds with antimicrobial and anticancer activities. We report here a new culture-independent approach to explore bacterial biosynthetic diversity and determine bacterial phyla in the microbial community associated with PK and NRP diversity in selected soils.ResultsThrough amplicon sequencing, we explored the microbial diversity (16S rRNA gene) of 13 soils from Antarctica, Africa, Europe and a Caribbean island and correlated this with the amplicon diversity of the adenylation (A) and ketosynthase (KS) domains within functional genes coding for non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), which are involved in the production of NRP and PK, respectively. Mantel and Procrustes correlation analyses with microbial taxonomic data identified not only the well-studied phyla Actinobacteria and Proteobacteria, but also, interestingly, the less biotechnologically exploited phyla Verrucomicrobia and Bacteroidetes, as potential sources harbouring diverse A and KS domains. Some soils, notably that from Antarctica, provided evidence of endemic diversity, whilst others, such as those from Europe, clustered together. In particular, the majority of the domain reads from Antarctica remained unmatched to known sequences suggesting they could encode enzymes for potentially novel PK and NRP.ConclusionsThe approach presented here highlights potential sources of metabolic novelty in the environment which will be a useful precursor to metagenomic biosynthetic gene cluster mining for PKs and NRPs which could provide leads for new antimicrobial metabolites. Article in Journal/Newspaper Antarc* Antarctica UFZ - Publication Index (Helmholtz-Centre for Environmental Research) Microbiome 7 1
institution Open Polar
collection UFZ - Publication Index (Helmholtz-Centre for Environmental Research)
op_collection_id ftufz
language English
topic 16S rRNA gene
PKS
NRPS
Natural product
BGCs
Soil
Biogeography
Endemicity
Antarctica
spellingShingle 16S rRNA gene
PKS
NRPS
Natural product
BGCs
Soil
Biogeography
Endemicity
Antarctica
Borsetto, C.
Amos, G.C.A.
Nunes da Rocha, Ulisses
Mitchell, A.L.
Finn, R.D.
Laidi, R.F.
Vallin, C.
Pearce, D.A.
Newsham, K.K.
Wellington, E.M.H.
Microbial community drivers of PK/NRP gene diversity in selected global soils
topic_facet 16S rRNA gene
PKS
NRPS
Natural product
BGCs
Soil
Biogeography
Endemicity
Antarctica
description BackgroundThe emergence of antibiotic-resistant pathogens has created an urgent need for novel antimicrobial treatments. Advances in next-generation sequencing have opened new frontiers for discovery programmes for natural products allowing the exploitation of a larger fraction of the microbial community. Polyketide (PK) and non-ribosomal pepetide (NRP) natural products have been reported to be related to compounds with antimicrobial and anticancer activities. We report here a new culture-independent approach to explore bacterial biosynthetic diversity and determine bacterial phyla in the microbial community associated with PK and NRP diversity in selected soils.ResultsThrough amplicon sequencing, we explored the microbial diversity (16S rRNA gene) of 13 soils from Antarctica, Africa, Europe and a Caribbean island and correlated this with the amplicon diversity of the adenylation (A) and ketosynthase (KS) domains within functional genes coding for non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), which are involved in the production of NRP and PK, respectively. Mantel and Procrustes correlation analyses with microbial taxonomic data identified not only the well-studied phyla Actinobacteria and Proteobacteria, but also, interestingly, the less biotechnologically exploited phyla Verrucomicrobia and Bacteroidetes, as potential sources harbouring diverse A and KS domains. Some soils, notably that from Antarctica, provided evidence of endemic diversity, whilst others, such as those from Europe, clustered together. In particular, the majority of the domain reads from Antarctica remained unmatched to known sequences suggesting they could encode enzymes for potentially novel PK and NRP.ConclusionsThe approach presented here highlights potential sources of metabolic novelty in the environment which will be a useful precursor to metagenomic biosynthetic gene cluster mining for PKs and NRPs which could provide leads for new antimicrobial metabolites.
format Article in Journal/Newspaper
author Borsetto, C.
Amos, G.C.A.
Nunes da Rocha, Ulisses
Mitchell, A.L.
Finn, R.D.
Laidi, R.F.
Vallin, C.
Pearce, D.A.
Newsham, K.K.
Wellington, E.M.H.
author_facet Borsetto, C.
Amos, G.C.A.
Nunes da Rocha, Ulisses
Mitchell, A.L.
Finn, R.D.
Laidi, R.F.
Vallin, C.
Pearce, D.A.
Newsham, K.K.
Wellington, E.M.H.
author_sort Borsetto, C.
title Microbial community drivers of PK/NRP gene diversity in selected global soils
title_short Microbial community drivers of PK/NRP gene diversity in selected global soils
title_full Microbial community drivers of PK/NRP gene diversity in selected global soils
title_fullStr Microbial community drivers of PK/NRP gene diversity in selected global soils
title_full_unstemmed Microbial community drivers of PK/NRP gene diversity in selected global soils
title_sort microbial community drivers of pk/nrp gene diversity in selected global soils
publisher Biomed Central, London
publishDate 2019
url https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=21920
https://doi.org/10.1186/s40168-019-0692-8
genre Antarc*
Antarctica
genre_facet Antarc*
Antarctica
op_source ISSN: 2049-2618
op_relation https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=21920
https://dx.doi.org/10.1186/s40168-019-0692-8
op_rights info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.1186/s40168-019-0692-8
container_title Microbiome
container_volume 7
container_issue 1
_version_ 1784884828308504576