Estimação da Cobertura de Gelo Marinho nos Mares Antárticos de Weddell, Belingshausen e Amundsen com Redes Neurais Artificiais

O gelo marinho desempenha um papel fundamental na regulação térmica das regiões polares. Observações de satélites evidenciam que na Antártica o gelo apresentava, na série histórica, tendências positivas em cobertura e extensão. Em 2019 houve um padrão de inversões entre os valores da normal climatol...

Full description

Bibliographic Details
Published in:Anuário do Instituto de Geociências
Main Authors: Tenorio, Ricardo Bruno de Araújo, Fernandez, José Henrique, Mendes, David, da Silva Júnior, José Pedro
Other Authors: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Universidade Federal do Rio Grande do Norte, Programa de Pós-Graduação em Ciências Climáticas
Format: Article in Journal/Newspaper
Language:English
Published: Universidade Federal do Rio de Janeiro 2022
Subjects:
Online Access:https://revistas.ufrj.br/index.php/aigeo/article/view/40763
https://doi.org/10.11137/1982-3908_2022_45_40763
id ftufriodejaneiro:oai:www.revistas.ufrj.br:article/40763
record_format openpolar
institution Open Polar
collection Portal de Periódicos da UFRJ (Universidade Federal do Rio de Janeiro)
op_collection_id ftufriodejaneiro
language English
topic Aprendizado profundo
CNN-LSTM
TensorFlow
spellingShingle Aprendizado profundo
CNN-LSTM
TensorFlow
Tenorio, Ricardo Bruno de Araújo
Fernandez, José Henrique
Mendes, David
da Silva Júnior, José Pedro
Estimação da Cobertura de Gelo Marinho nos Mares Antárticos de Weddell, Belingshausen e Amundsen com Redes Neurais Artificiais
topic_facet Aprendizado profundo
CNN-LSTM
TensorFlow
description O gelo marinho desempenha um papel fundamental na regulação térmica das regiões polares. Observações de satélites evidenciam que na Antártica o gelo apresentava, na série histórica, tendências positivas em cobertura e extensão. Em 2019 houve um padrão de inversões entre os valores da normal climatológica e dos dados de reanálise. Nesse contexto, este estudo teve como principal objetivo avaliar o potencial de previsibilidade de cobertura de gelo marinho com a aplicação de técnicas de RNAs em 3 mares que banham o continente Antártico, a saber: Weddell, Bellingshausen e Amundsen. Para tanto, foram utilizados como previsores a temperatura da superfície do mar, a temperatura do ar a 2 metros, a velocidade do vento a 10 metros, o albedo e os fluxos de calor latente e sensível, no período de 1979 a 2019. Os dados foram particionados em 70% para treinamento e 30% para testes. Modelos SARIMAX serviram como valores de referência para aferição da precisão das previsões com RNAs. Em todos os meses com anomalias absolutas superiores a 15% de concentração, o modelo de RNA CNN-LSTM superou os modelos MLP e SARIMAX.
author2 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Universidade Federal do Rio Grande do Norte, Programa de Pós-Graduação em Ciências Climáticas
format Article in Journal/Newspaper
author Tenorio, Ricardo Bruno de Araújo
Fernandez, José Henrique
Mendes, David
da Silva Júnior, José Pedro
author_facet Tenorio, Ricardo Bruno de Araújo
Fernandez, José Henrique
Mendes, David
da Silva Júnior, José Pedro
author_sort Tenorio, Ricardo Bruno de Araújo
title Estimação da Cobertura de Gelo Marinho nos Mares Antárticos de Weddell, Belingshausen e Amundsen com Redes Neurais Artificiais
title_short Estimação da Cobertura de Gelo Marinho nos Mares Antárticos de Weddell, Belingshausen e Amundsen com Redes Neurais Artificiais
title_full Estimação da Cobertura de Gelo Marinho nos Mares Antárticos de Weddell, Belingshausen e Amundsen com Redes Neurais Artificiais
title_fullStr Estimação da Cobertura de Gelo Marinho nos Mares Antárticos de Weddell, Belingshausen e Amundsen com Redes Neurais Artificiais
title_full_unstemmed Estimação da Cobertura de Gelo Marinho nos Mares Antárticos de Weddell, Belingshausen e Amundsen com Redes Neurais Artificiais
title_sort estimação da cobertura de gelo marinho nos mares antárticos de weddell, belingshausen e amundsen com redes neurais artificiais
publisher Universidade Federal do Rio de Janeiro
publishDate 2022
url https://revistas.ufrj.br/index.php/aigeo/article/view/40763
https://doi.org/10.11137/1982-3908_2022_45_40763
geographic Weddell
geographic_facet Weddell
genre Annals of Glaciology
Antártica
Arctic
The Cryosphere
genre_facet Annals of Glaciology
Antártica
Arctic
The Cryosphere
op_source Anuário do Instituto de Geociências; v. 45 (2022)
1982-3908
0101-9759
op_relation https://revistas.ufrj.br/index.php/aigeo/article/view/40763/pdf
https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/40763/15413
https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/40763/15854
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Ir-ving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Leven-berg, J., Mané, D., Monga, R., Moore S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, T., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y. & Zheng, X. 2015, TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. https://arxiv.org/pdf/1603.04467.pdf
Akaike, H. 1974, ‘A new look at the statistical model identification’, IEEE Trans-actions on Automatic Control, vol. 19, no. 6, pp. 716-23. https://doi.org/10.1109/TAC.1974.1100705
Armour, K.C., Scott, J., Donohoe, A., Newsom, E.R. & Marshall J.C. 2016, ‘Southern Ocean warming delayed by circumpolar upwelling and equa-torward transport’, Nature Geoscience, vol. 9, no. 7, pp. 549-54. https://doi.org/10.1038/ngeo2731
Boetius, A., Anesio, A.M., Deming, J.W., Mikucki, J.A. & Rapp, J.Z. 2015, ‘Mi-crobial ecology of the cryosphere: sea ice and glacial habitats’, Nature Re-views Microbiology, vol. 13, no. 11, pp. 677-90. https://doi.org/10.1038/nrmicro3522
Box, G.E.P. & Jenkins, G.M. 1976, Time Series Analysis: Forecasting and Con-trol, Holden-Day, San Francisco, CA.
Breiman, L. 2001, ‘Random forests’, Machine learning, vol. 45, no. 1, pp. 5-32. https://doi.org/10.1023/A:1010933404324
Brownlee, J. 2016, Deep Learning with Python: Develop Deep Learning Models on Theano and TensorFlow using Keras, Machine Learning Mastery.
Cavalieri, D.J., Gloersen P., Parkinson, C.L., Comiso, J.C. & Zwally, H.J. 1997, ‘Observed hemispheric asymmetry in global sea ice changes’, Science, vol. 278, no. 5340, pp. 1104-6. https://doi.org/10.1126/science.278.5340.1104
Cavalieri, D. & Parkinson, C.L. 2012, ‘Arctic sea ice variability and trends, 1979-2010’, The Cryosphere, vol. 6, no. 4, pp. 881-9. https://doi.org/10.5194/tc-6-881-2012
Chambault, P., Albertsen, C.M., Patterson, T.A., Hansen, R.G., Tervo, O., Laidre, K.L. & Heide-Jørgensen, M.P. 2018, ‘Sea surface temperature pre-dicts the movements of the Arctic cetacean: the bowhead whale’, Scientific reports, vol. 8, no. 1, pp. 1-12. https://doi.org/10.1038/s41598-018-27966-1
Chemke, R. & Polvani, L.M. 2020, ‘Using multiple large ensembles to elucidate the discrepancy between the 1979-2019 modeled and observed Antarctic Sea ice trends’, Geophysical Research Letters, vol. 47, no. 15, pp. e2020GL088339. https://doi.org/10.1029/2020GL088339
Chen, J., Li, M. & Wang, W. 2012, ‘Statistical uncertainty estimation using Ran-dom Forests and its application to drought forecast’, Mathematical Prob-lems in Engineering, vol. 2012, no. 915053. https://doi.org/10.1155/2012/915053
Evermann, J., Rehse, J.R. & Fettke, P. 2017, XES Tensorflow: Process predic-tion using the Tensorflow deep-learning framework, ArXv, vol. 1. https://arxiv.org/pdf/1705.01507.pdf
Gagné, M., Gillett, N. & Fyfe, P. 2015, ‘Observed and simulated changes in Antarctic sea ice extent over the past 50 years’, Geophysical Research Let-ters, vol. 42, no. 1, pp. 90-5. https://doi.org/10.1002/2014GL062231
Gloersen, P., Campbell, W.J., Cavalieri, D.J., Comiso, J.C., Parkinson, C.L. & Zwally, H.J. (eds) 1992, Arctic and antarctic sea ice: satellite passive-microwave observations and analysis, NASA, Washington D.C. Haykin, S. 2007, Redes Neurais: Princípios e Prática, 2nd edn, Bookman, Porto Alegre, RS.
Ho, T.K. 1995, ‘Random decision forests’, 3rd international conference on doc-ument analysis and recognition 1995, IEEE, Murray Hill, NJ, pp. 278-82. https://doi.org/10.1109/ICDAR.1995.598994
Hochreiter, S. & Schmidhuber, J. 1997, ‘Long Short-Term Memory’, Neural computation, vol. 9, no. 8, pp. 1735-80. https://doi.org/10.1162/neco.1997.9.8.1735
Hutchinson, D.K., England, M.H., Santoso, A. & Hogg, A.M. 2013, ‘Interhe-mispheric asymmetry in transient global warming: The role of Drake Pas-sage’, Geophysical Research Letters, vol. 40, no. 8, pp. 1587-93. https://doi.org/10.1002/grl.50341
Hu, M.Y., Zhang, G., Jiang, C.X. & Patuwo, B.E. 1999, ‘A Cross-Validation Analysis of Neural Network Out-of-Sample Performance in Exchange Rate Forecasting’, Decision Sciences, vol. 30, no. 1, pp. 197-216. https://doi.org/10.1111/j.1540-5915.1999.tb01606.x
Kirchmeier-Young, M.C., Zwiers, F.W. & Gillett, N.P. 2017, ‘Attribution of ex-treme events in Arctic sea ice extent’, Journal of Climate, vol. 30, no. 2, pp. 553-71. https://doi.org/10.1175/JCLI-D-16-0412.1
Lawrence, S., Giles, C.L., Tsoi, A.C. & Back, A.D. 1997, ‘Face recognition: A convolutional neural-network approach’, IEEE transactions on neural net-works, vol. 8, no. 1, pp. 98-113. https://doi.org/10.1109/72.554195
LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. 1998, ‘Gradient-based learning applied to document recognition’, Proceedings of the IEEE, vol. 86, no. 21, pp. 2278-324. https://doi.org/10.1109/5.726791
Meehl, G.A, Arblaster, J.M., Chung, C.T.Y., Holland, M.M., DuVivier, A., Thompson, L., Yang, D. & Bitz, C.M. 2019, ‘Sustained ocean changes con-tributed to sudden Antarctic ice retreat in late 2016’, Nature Communica-tions, vol. 10, no. 1, pp. 1-9. https://doi.org/10.1038/s41467-018-07865-9
Olah, C. 2015, Understanding LSTM Networks, Colah’s Blog, weblog, viewed 13 July 2021, <https://colah.github.io/posts/2015-08-Understanding-LSTMs/>
Oliva, M., Navarro, F., Hrbáček, F., Hernández, A., Nývlt, D., Pereira, P., Ruiz-Fernández, J. & Trigo, R. 2017, ‘Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere’, Science of The Total Environment, vol. 580, pp. 210-23. https://doi.org/10.1016/j.scitotenv.2016.12.030
Parkinson, C.L. 2002, ‘Trends in the length of the Southern Ocean sea-ice sea-son’, Annals of Glaciology, vol. 34, no. 1, pp. 435-40. https://doi.org/10.3189/172756402781817482
Parkinson, C.L. 2019, ’A 40-y record reveals gradual Antarctic Sea ice increas-es followed by decreases at rates far exceeding the rates seen in the Arc-tic’, Proceedings of the National Academy of Sciences, vol. 116, no. 29, pp. 14414-23. https://doi.org/10.1073/pnas.1906556116
Raphael, M.N., Marshall, G.J., Turner, J., Fogt, R.L., Schneider, D., Dixon, D.A., Hosking, J.S., Jones, J.M. & Hobbs, W.R. 2016, ‘The Amundsen Sea Low: Variability, Change and Impact on Antarctic climate’, Bulletin of the Ameri-can Meteorological Society, vol. 97, no. 1, pp. 111-21. https://doi.org/10.1175/BAMS-D-14-00018.1
Rosenblatt, F. 1958, ‘The Perceptron: A probabilistic model for information stor-age and organization in the brain’, Psychological Review, vol. 65, no. 6, pp. 386-408. https://doi.apa.org/doi/10.1037/h0042519
Rouch, L.A., Dörr, J., Holmes, C.R., Massonnet, F., Blockley, E.W., Notz, D., Rackwow, T., Raphael, M.N., O’Farrell, S.P., Bailey, D.A. & Bitz, C.M. 2020, ‘Antarctic Sea ice area in CMIP6’, Geophysical Research Letters, vol. 47, no. 9, pp. e2019GL086729. https://doi.org/10.1029/2019GL086729
Serreze, M.C., Holland, M.M. & Stroeve, J. 2007, ‘Perspectives on the Artic’s Shrinking sea-ice cover’, Science, vol. 315, no. 5818, pp. 1533-36. https://doi.org/10.1126/science.1139426
Strobl, C., Boulesteix, A.L., Zeileis, A., & Hothorn, T. 2007, ‘Bias in random for-est variable importance measures: Illustrations, sources and a solution’, BMC bioinformatics, vol. 8, no. 1, pp. 1-21. https://doi.org/10.1186/1471-2105-8-25
Stroeve, J.C., Kattsov, V., Barret A., Serreze, M., Pavlova, T., Holland, M. & Meier, W. 2012, ‘Trends in Arctic Sea ice extent from CMIP5, CMIP3 and observations’, Geophysical Research Letters, vol. 39, no. 16, pp. L16502. https://doi.org/10.1029/2012GL052676
Turner, J., Lu, H., White, I., King, J.C., Phillips, T., Scott H.J., Bracegirdle, T.J., Marshall, G.J., Mulvaney, R. & Deb, P. 2016, ‘Absence of 21st century warming on Antarctic Peninsula consistent with natural variability’, Nature, vol. 535, no. 7612, pp. 411-5. https://doi.org/10.1038/nature18645
Turner, J., Guarino, M.V., Arnatt, J., Jena, B., Marshall, G.J., Phillips, T., Bajish, C.C., Clem, K., Wang, Z., Andersson, T., Murphy, E.J. & Cavanagh, R. 2020, ‘Recent Decrease of Summer Sea Ice in the Weddell Sea, Antarcti-ca’, Geophysical Research Letters, vol. 47, no. 11, pp. e2020GL087127. https://doi.org/10.1029/2020GL087127
Yegnanarayana, B. 2005, Artificial Neural Networks, Prentice-Hall of India, No-va Deli.
Young, T., Hazarika, D., Poria, S. & Cambria, E. 2018, ‘Recent trends in deep learning based natural language processing’, IEEE Computational intelli-gence magazine, vol. 13, no. 3, pp. 55-75. https://arxiv.org/abs/1708.02709
Vaughan, D.G., Marshall, G.J., Connolley, W.M., Parkinson, C., Mulvaney, R., Hodgson, D.A., King, J.C., Pudsey, C.J. & Turner, J. 2003, ‘Recent rapid regional climate warming on the Antarctic Peninsula’, Climate Change, vol. 60, no. 3, pp. 243-74. https://doi.org/10.1023/A:1026021217991 Wilks, D.S. 2006, Statistical Methods in the Atmospheric Sciences, 2nd edn, Academic Press, London.
https://revistas.ufrj.br/index.php/aigeo/article/view/40763
doi:10.11137/1982-3908_2022_45_40763
op_rights Direitos autorais 2022 Anuário do Instituto de Geociências
http://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.11137/1982-3908_2022_45_40763
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.3189/172756402781817482
https://doi.org/10.1073/pnas.1
container_title Anuário do Instituto de Geociências
container_volume 45
_version_ 1766003892259127296
spelling ftufriodejaneiro:oai:www.revistas.ufrj.br:article/40763 2023-05-15T13:29:52+02:00 Estimação da Cobertura de Gelo Marinho nos Mares Antárticos de Weddell, Belingshausen e Amundsen com Redes Neurais Artificiais Tenorio, Ricardo Bruno de Araújo Fernandez, José Henrique Mendes, David da Silva Júnior, José Pedro Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Universidade Federal do Rio Grande do Norte, Programa de Pós-Graduação em Ciências Climáticas 2022-06-21 application/pdf https://revistas.ufrj.br/index.php/aigeo/article/view/40763 https://doi.org/10.11137/1982-3908_2022_45_40763 eng eng Universidade Federal do Rio de Janeiro https://revistas.ufrj.br/index.php/aigeo/article/view/40763/pdf https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/40763/15413 https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/40763/15854 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Ir-ving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Leven-berg, J., Mané, D., Monga, R., Moore S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, T., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y. & Zheng, X. 2015, TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. https://arxiv.org/pdf/1603.04467.pdf Akaike, H. 1974, ‘A new look at the statistical model identification’, IEEE Trans-actions on Automatic Control, vol. 19, no. 6, pp. 716-23. https://doi.org/10.1109/TAC.1974.1100705 Armour, K.C., Scott, J., Donohoe, A., Newsom, E.R. & Marshall J.C. 2016, ‘Southern Ocean warming delayed by circumpolar upwelling and equa-torward transport’, Nature Geoscience, vol. 9, no. 7, pp. 549-54. https://doi.org/10.1038/ngeo2731 Boetius, A., Anesio, A.M., Deming, J.W., Mikucki, J.A. & Rapp, J.Z. 2015, ‘Mi-crobial ecology of the cryosphere: sea ice and glacial habitats’, Nature Re-views Microbiology, vol. 13, no. 11, pp. 677-90. https://doi.org/10.1038/nrmicro3522 Box, G.E.P. & Jenkins, G.M. 1976, Time Series Analysis: Forecasting and Con-trol, Holden-Day, San Francisco, CA. Breiman, L. 2001, ‘Random forests’, Machine learning, vol. 45, no. 1, pp. 5-32. https://doi.org/10.1023/A:1010933404324 Brownlee, J. 2016, Deep Learning with Python: Develop Deep Learning Models on Theano and TensorFlow using Keras, Machine Learning Mastery. Cavalieri, D.J., Gloersen P., Parkinson, C.L., Comiso, J.C. & Zwally, H.J. 1997, ‘Observed hemispheric asymmetry in global sea ice changes’, Science, vol. 278, no. 5340, pp. 1104-6. https://doi.org/10.1126/science.278.5340.1104 Cavalieri, D. & Parkinson, C.L. 2012, ‘Arctic sea ice variability and trends, 1979-2010’, The Cryosphere, vol. 6, no. 4, pp. 881-9. https://doi.org/10.5194/tc-6-881-2012 Chambault, P., Albertsen, C.M., Patterson, T.A., Hansen, R.G., Tervo, O., Laidre, K.L. & Heide-Jørgensen, M.P. 2018, ‘Sea surface temperature pre-dicts the movements of the Arctic cetacean: the bowhead whale’, Scientific reports, vol. 8, no. 1, pp. 1-12. https://doi.org/10.1038/s41598-018-27966-1 Chemke, R. & Polvani, L.M. 2020, ‘Using multiple large ensembles to elucidate the discrepancy between the 1979-2019 modeled and observed Antarctic Sea ice trends’, Geophysical Research Letters, vol. 47, no. 15, pp. e2020GL088339. https://doi.org/10.1029/2020GL088339 Chen, J., Li, M. & Wang, W. 2012, ‘Statistical uncertainty estimation using Ran-dom Forests and its application to drought forecast’, Mathematical Prob-lems in Engineering, vol. 2012, no. 915053. https://doi.org/10.1155/2012/915053 Evermann, J., Rehse, J.R. & Fettke, P. 2017, XES Tensorflow: Process predic-tion using the Tensorflow deep-learning framework, ArXv, vol. 1. https://arxiv.org/pdf/1705.01507.pdf Gagné, M., Gillett, N. & Fyfe, P. 2015, ‘Observed and simulated changes in Antarctic sea ice extent over the past 50 years’, Geophysical Research Let-ters, vol. 42, no. 1, pp. 90-5. https://doi.org/10.1002/2014GL062231 Gloersen, P., Campbell, W.J., Cavalieri, D.J., Comiso, J.C., Parkinson, C.L. & Zwally, H.J. (eds) 1992, Arctic and antarctic sea ice: satellite passive-microwave observations and analysis, NASA, Washington D.C. Haykin, S. 2007, Redes Neurais: Princípios e Prática, 2nd edn, Bookman, Porto Alegre, RS. Ho, T.K. 1995, ‘Random decision forests’, 3rd international conference on doc-ument analysis and recognition 1995, IEEE, Murray Hill, NJ, pp. 278-82. https://doi.org/10.1109/ICDAR.1995.598994 Hochreiter, S. & Schmidhuber, J. 1997, ‘Long Short-Term Memory’, Neural computation, vol. 9, no. 8, pp. 1735-80. https://doi.org/10.1162/neco.1997.9.8.1735 Hutchinson, D.K., England, M.H., Santoso, A. & Hogg, A.M. 2013, ‘Interhe-mispheric asymmetry in transient global warming: The role of Drake Pas-sage’, Geophysical Research Letters, vol. 40, no. 8, pp. 1587-93. https://doi.org/10.1002/grl.50341 Hu, M.Y., Zhang, G., Jiang, C.X. & Patuwo, B.E. 1999, ‘A Cross-Validation Analysis of Neural Network Out-of-Sample Performance in Exchange Rate Forecasting’, Decision Sciences, vol. 30, no. 1, pp. 197-216. https://doi.org/10.1111/j.1540-5915.1999.tb01606.x Kirchmeier-Young, M.C., Zwiers, F.W. & Gillett, N.P. 2017, ‘Attribution of ex-treme events in Arctic sea ice extent’, Journal of Climate, vol. 30, no. 2, pp. 553-71. https://doi.org/10.1175/JCLI-D-16-0412.1 Lawrence, S., Giles, C.L., Tsoi, A.C. & Back, A.D. 1997, ‘Face recognition: A convolutional neural-network approach’, IEEE transactions on neural net-works, vol. 8, no. 1, pp. 98-113. https://doi.org/10.1109/72.554195 LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. 1998, ‘Gradient-based learning applied to document recognition’, Proceedings of the IEEE, vol. 86, no. 21, pp. 2278-324. https://doi.org/10.1109/5.726791 Meehl, G.A, Arblaster, J.M., Chung, C.T.Y., Holland, M.M., DuVivier, A., Thompson, L., Yang, D. & Bitz, C.M. 2019, ‘Sustained ocean changes con-tributed to sudden Antarctic ice retreat in late 2016’, Nature Communica-tions, vol. 10, no. 1, pp. 1-9. https://doi.org/10.1038/s41467-018-07865-9 Olah, C. 2015, Understanding LSTM Networks, Colah’s Blog, weblog, viewed 13 July 2021, <https://colah.github.io/posts/2015-08-Understanding-LSTMs/> Oliva, M., Navarro, F., Hrbáček, F., Hernández, A., Nývlt, D., Pereira, P., Ruiz-Fernández, J. & Trigo, R. 2017, ‘Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere’, Science of The Total Environment, vol. 580, pp. 210-23. https://doi.org/10.1016/j.scitotenv.2016.12.030 Parkinson, C.L. 2002, ‘Trends in the length of the Southern Ocean sea-ice sea-son’, Annals of Glaciology, vol. 34, no. 1, pp. 435-40. https://doi.org/10.3189/172756402781817482 Parkinson, C.L. 2019, ’A 40-y record reveals gradual Antarctic Sea ice increas-es followed by decreases at rates far exceeding the rates seen in the Arc-tic’, Proceedings of the National Academy of Sciences, vol. 116, no. 29, pp. 14414-23. https://doi.org/10.1073/pnas.1906556116 Raphael, M.N., Marshall, G.J., Turner, J., Fogt, R.L., Schneider, D., Dixon, D.A., Hosking, J.S., Jones, J.M. & Hobbs, W.R. 2016, ‘The Amundsen Sea Low: Variability, Change and Impact on Antarctic climate’, Bulletin of the Ameri-can Meteorological Society, vol. 97, no. 1, pp. 111-21. https://doi.org/10.1175/BAMS-D-14-00018.1 Rosenblatt, F. 1958, ‘The Perceptron: A probabilistic model for information stor-age and organization in the brain’, Psychological Review, vol. 65, no. 6, pp. 386-408. https://doi.apa.org/doi/10.1037/h0042519 Rouch, L.A., Dörr, J., Holmes, C.R., Massonnet, F., Blockley, E.W., Notz, D., Rackwow, T., Raphael, M.N., O’Farrell, S.P., Bailey, D.A. & Bitz, C.M. 2020, ‘Antarctic Sea ice area in CMIP6’, Geophysical Research Letters, vol. 47, no. 9, pp. e2019GL086729. https://doi.org/10.1029/2019GL086729 Serreze, M.C., Holland, M.M. & Stroeve, J. 2007, ‘Perspectives on the Artic’s Shrinking sea-ice cover’, Science, vol. 315, no. 5818, pp. 1533-36. https://doi.org/10.1126/science.1139426 Strobl, C., Boulesteix, A.L., Zeileis, A., & Hothorn, T. 2007, ‘Bias in random for-est variable importance measures: Illustrations, sources and a solution’, BMC bioinformatics, vol. 8, no. 1, pp. 1-21. https://doi.org/10.1186/1471-2105-8-25 Stroeve, J.C., Kattsov, V., Barret A., Serreze, M., Pavlova, T., Holland, M. & Meier, W. 2012, ‘Trends in Arctic Sea ice extent from CMIP5, CMIP3 and observations’, Geophysical Research Letters, vol. 39, no. 16, pp. L16502. https://doi.org/10.1029/2012GL052676 Turner, J., Lu, H., White, I., King, J.C., Phillips, T., Scott H.J., Bracegirdle, T.J., Marshall, G.J., Mulvaney, R. & Deb, P. 2016, ‘Absence of 21st century warming on Antarctic Peninsula consistent with natural variability’, Nature, vol. 535, no. 7612, pp. 411-5. https://doi.org/10.1038/nature18645 Turner, J., Guarino, M.V., Arnatt, J., Jena, B., Marshall, G.J., Phillips, T., Bajish, C.C., Clem, K., Wang, Z., Andersson, T., Murphy, E.J. & Cavanagh, R. 2020, ‘Recent Decrease of Summer Sea Ice in the Weddell Sea, Antarcti-ca’, Geophysical Research Letters, vol. 47, no. 11, pp. e2020GL087127. https://doi.org/10.1029/2020GL087127 Yegnanarayana, B. 2005, Artificial Neural Networks, Prentice-Hall of India, No-va Deli. Young, T., Hazarika, D., Poria, S. & Cambria, E. 2018, ‘Recent trends in deep learning based natural language processing’, IEEE Computational intelli-gence magazine, vol. 13, no. 3, pp. 55-75. https://arxiv.org/abs/1708.02709 Vaughan, D.G., Marshall, G.J., Connolley, W.M., Parkinson, C., Mulvaney, R., Hodgson, D.A., King, J.C., Pudsey, C.J. & Turner, J. 2003, ‘Recent rapid regional climate warming on the Antarctic Peninsula’, Climate Change, vol. 60, no. 3, pp. 243-74. https://doi.org/10.1023/A:1026021217991 Wilks, D.S. 2006, Statistical Methods in the Atmospheric Sciences, 2nd edn, Academic Press, London. https://revistas.ufrj.br/index.php/aigeo/article/view/40763 doi:10.11137/1982-3908_2022_45_40763 Direitos autorais 2022 Anuário do Instituto de Geociências http://creativecommons.org/licenses/by/4.0 CC-BY Anuário do Instituto de Geociências; v. 45 (2022) 1982-3908 0101-9759 Aprendizado profundo CNN-LSTM TensorFlow info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2022 ftufriodejaneiro https://doi.org/10.11137/1982-3908_2022_45_40763 https://doi.org/10.1109/TAC.1974.1100705 https://doi.org/10.1023/A:1010933404324 https://doi.org/10.1109/ICDAR.1995.598994 https://doi.org/10.3189/172756402781817482 https://doi.org/10.1073/pnas.1 2023-01-01T02:19:41Z O gelo marinho desempenha um papel fundamental na regulação térmica das regiões polares. Observações de satélites evidenciam que na Antártica o gelo apresentava, na série histórica, tendências positivas em cobertura e extensão. Em 2019 houve um padrão de inversões entre os valores da normal climatológica e dos dados de reanálise. Nesse contexto, este estudo teve como principal objetivo avaliar o potencial de previsibilidade de cobertura de gelo marinho com a aplicação de técnicas de RNAs em 3 mares que banham o continente Antártico, a saber: Weddell, Bellingshausen e Amundsen. Para tanto, foram utilizados como previsores a temperatura da superfície do mar, a temperatura do ar a 2 metros, a velocidade do vento a 10 metros, o albedo e os fluxos de calor latente e sensível, no período de 1979 a 2019. Os dados foram particionados em 70% para treinamento e 30% para testes. Modelos SARIMAX serviram como valores de referência para aferição da precisão das previsões com RNAs. Em todos os meses com anomalias absolutas superiores a 15% de concentração, o modelo de RNA CNN-LSTM superou os modelos MLP e SARIMAX. Article in Journal/Newspaper Annals of Glaciology Antártica Arctic The Cryosphere Portal de Periódicos da UFRJ (Universidade Federal do Rio de Janeiro) Weddell Anuário do Instituto de Geociências 45