Photoperiod in aquaculture of the sea urchin Arbacia dufresnii (Echinodermata: Echinoidea): Effects on gamete production and maturity

Introduction: Photoperiod is, together with temperature and food availability, one of the main stimuli in the regulation of gametogenesis in a wide variety of species. Objective: To evaluate the effect of photoperiod on the production of mature gametes in cultured Arbacia dufresnii. Methods: An expe...

Full description

Bibliographic Details
Published in:Revista de Biología Tropical
Main Authors: Sepúlveda, Lucas-R., Pía-Fernandez, Jimena, Vera-Piombo, Mercedes, Belén-Chaar, Florencia, Rubilar, Tamara
Format: Article in Journal/Newspaper
Language:English
Published: Universidad de Costa Rica 2021
Subjects:
Online Access:https://revistas.ucr.ac.cr/index.php/rbt/article/view/46386
https://doi.org/10.15517/rbt.v69iSuppl.1.46386
id ftucostaricaojs:oai:portal.ucr.ac.cr:article/46386
record_format openpolar
institution Open Polar
collection Portal de revistas académicas de la Universidad de Costa Rica
op_collection_id ftucostaricaojs
language English
topic gonad productivity
echinoderm
echinoid
aquaculture
mature gametes
productividad gonadal
equinodermo
equinoideo
acuacultura
gametas maduras
spellingShingle gonad productivity
echinoderm
echinoid
aquaculture
mature gametes
productividad gonadal
equinodermo
equinoideo
acuacultura
gametas maduras
Sepúlveda, Lucas-R.
Pía-Fernandez, Jimena
Vera-Piombo, Mercedes
Belén-Chaar, Florencia
Rubilar, Tamara
Photoperiod in aquaculture of the sea urchin Arbacia dufresnii (Echinodermata: Echinoidea): Effects on gamete production and maturity
topic_facet gonad productivity
echinoderm
echinoid
aquaculture
mature gametes
productividad gonadal
equinodermo
equinoideo
acuacultura
gametas maduras
description Introduction: Photoperiod is, together with temperature and food availability, one of the main stimuli in the regulation of gametogenesis in a wide variety of species. Objective: To evaluate the effect of photoperiod on the production of mature gametes in cultured Arbacia dufresnii. Methods: An experiment was carried out with three varying light-dark regimes/treatments: constant light (24 h light), neutral photoperiod (12 h light, 12 h darkness), and constant darkness (24 h darkness). Twenty females were used in each treatment. All were induced to spawn and, ten randomly selected females from each treatment were induced to spawn again after 30 days. After 60 days, spawning was induced in the remaining females. The gametes were collected in filtered seawater, fixed in Davidson solution, quantified and measured per individual in triplicate in a Sedgewick-Rafter chamber. To determine maturation, fertilization success was evaluated 30 minutes after fertilization. Results: Our results showed that in the aquaculture system, after only two months, mature gametes were obtained, and in the neutral light regime there were 10 times more gametes than the number produced in wild sea urchins during the spawning period in question. We also found that with a greater exposure to light, a lower number of mature gametes was produced. Conclusions: This study suggests the viability of the production of mature gametes in a short period of time as regards Arbacia dufresnii. Introducción: El fotoperiodo es, junto con la temperatura y la disponibilidad de alimentos, uno de los principales estímulos para el desarrollo de la gametogénesis en una amplia variedad de especies. Objetivo: Evaluar el efecto del fotoperiodo en la producción de gametas maduras de Arbacia dufresnii en un sistema de recirculación cerrado para determinar el mejor fotoperiodo para una acuicultura novedosa, enfocada en la producción de gametas con alta concentración de pigmentos para usos biotecnológicos. Métodos: Se realizó un experimento con tres ...
format Article in Journal/Newspaper
author Sepúlveda, Lucas-R.
Pía-Fernandez, Jimena
Vera-Piombo, Mercedes
Belén-Chaar, Florencia
Rubilar, Tamara
author_facet Sepúlveda, Lucas-R.
Pía-Fernandez, Jimena
Vera-Piombo, Mercedes
Belén-Chaar, Florencia
Rubilar, Tamara
author_sort Sepúlveda, Lucas-R.
title Photoperiod in aquaculture of the sea urchin Arbacia dufresnii (Echinodermata: Echinoidea): Effects on gamete production and maturity
title_short Photoperiod in aquaculture of the sea urchin Arbacia dufresnii (Echinodermata: Echinoidea): Effects on gamete production and maturity
title_full Photoperiod in aquaculture of the sea urchin Arbacia dufresnii (Echinodermata: Echinoidea): Effects on gamete production and maturity
title_fullStr Photoperiod in aquaculture of the sea urchin Arbacia dufresnii (Echinodermata: Echinoidea): Effects on gamete production and maturity
title_full_unstemmed Photoperiod in aquaculture of the sea urchin Arbacia dufresnii (Echinodermata: Echinoidea): Effects on gamete production and maturity
title_sort photoperiod in aquaculture of the sea urchin arbacia dufresnii (echinodermata: echinoidea): effects on gamete production and maturity
publisher Universidad de Costa Rica
publishDate 2021
url https://revistas.ucr.ac.cr/index.php/rbt/article/view/46386
https://doi.org/10.15517/rbt.v69iSuppl.1.46386
long_lat ENVELOPE(-44.766,-44.766,-60.766,-60.766)
ENVELOPE(-64.250,-64.250,-65.317,-65.317)
ENVELOPE(-101.146,-101.146,55.620,55.620)
geographic Alta
Davidson
Erizo
Rafter
geographic_facet Alta
Davidson
Erizo
Rafter
genre Polar Biology
genre_facet Polar Biology
op_source Revista Biología Tropical; v. 69 n. S1 (2021): Volumen 69 – Suplemento 1 – Marzo 2021: Estudios latinoamericanos en equinodermos V; S464-S473
Revista de Biología Tropical; Vol 69 No S1 (2021): Volume 69 – Supplement 1 – March 2021: Research on Echinoderms in Latin America V; S464-S473
Revista de Biología Tropical; Vol. 69 Núm. S1 (2021): Volumen 69 – Suplemento 1 – Marzo 2021: Estudios latinoamericanos en equinodermos V; S464-S473
2215-2075
0034-7744
10.15517/rbt.v69iSuppl.1
op_relation https://revistas.ucr.ac.cr/index.php/rbt/article/view/46386/46125
https://revistas.ucr.ac.cr/index.php/rbt/article/view/46386/46126
Anderson, M.J., Gorley, R.N., & Clarke, K.R. (2008). PERMANOVA+ for PRIMER: Guide to software and statistical methods. Plymouth, United Kingdom: Primer_E Ltd.
Bay-Schmith, E., & Pearse, J.S. (1987). Effect of fixed daylengths on the photoperiodic regulation of gametogenesis in the sea urchin Strongylocentrotus purpuratus. International Journal of Invertebrate Reproduction and Development, 11(3), 287-294.
Brogger, M.I., Martinez, M.I., & Penchaszadeh, P.E. (2010). Reproduction of the sea urchin Arbacia dufresnii (Echinoidea: Arbaciidae) from Golfo Nuevo, Argentina. Journal of the Marine Biological Association of the United Kingdom, 90(7), 1405-1409.
Brogger, M., Gil, D.G., Rubilar, T., Martinez, M., Díaz de Vivar, M.E., Escolar, M., Epherra, L., Pérez, A., & Tablado, A. (2013). Echinoderms from Argentina: Biodiversity, distribution and current state of knowledge. In J.J. Alvarado & F. Solís-Marín (Eds.), Echinoderm Research and Diversity in Latin America (pp. 359-402). Berlín, Heidelberg: Springer-Verlag.
Bromage, N., Porter, M., & Randall, C. (2001). The environmental regulation of maturation in farmed finfish with special reference to the role of photoperiod and melatonin. Aquaculture, 197, 63-98.
Byrne, M. (1990). Annual reproductive cycle of the commercial sea urchin Paracentrotus lividus from an exposed intertidal and a sheltered subtidal habitat on the west coast of Ireland. Marine Biology, 104, 275-289.
Cárcamo, P. (2004). Massive production of larvae and seeds of the sea urchin Loxechinus albus. In J.M. Lawrence & O. Guzmán (Eds.), Sea urchins: Fisheries and Ecology (pp. 299-306). Lancaster: DEStech Publications Inc.
Devauchelle, N., & Mingant, C. (1991). Review of the reproductive physiology of the scallop, Pecten maximus, applicable to intensive aquaculture. Aquatic Living Resources, 4(1), 41-51.
Díaz-Martínez J.P., Carpizo-Ituarte, E.J., & Benítez-Villalobos, F. (2019). Reproductive patterns of the black starry sea urchin Arbacia stellata in Punta Banda, Baja California, Mexico. Journal of the Marine Biological Association of the United Kingdom, 99(6), 1379-1391.
Epherra, L., Gil, D.G., Rubilar, T., Perez-Gallo, S., Reartes, M.B., & Tolosano, J.A. (2014). Temporal and spatial differences in the reproductive biology of the sea urchin Arbacia dufresnii. Marine and Freshwater Research, 66, 329-342.
Fernández, J.P., Epherra, L., Sepúlveda, L., & Rubilar, T. (2019). Desarrollo embrionario y larval del erizo de mar verde Arbacia dufresnii. Naturalia Patagónica, 14, 44-58.
Fuji, A. (1967). Ecological studies on the growth and food consumption of Japanese common littoral sea urchin, Strongylocentrotus intermedius (A. Agassiz). Memoirs of the Faculty of Fisheries Hokkaido University, 15(2), 83-160.
Gianguzza, P., & Bonaviri, C. (2013). Arbacia. In J.M. Lawrence (Ed.), Developments in Aquaculture and Fisheries Science (Vol. 38, pp. 275-283). Amsterdam: Elsevier.
Harris, L.G., & Eddy, S.D. (2015). Sea urchin ecology and biology. Echinoderm Aquaculture, 1-24.
James, P., Siikavuopio, S.I., & Mortensen, A. (2015). Sea urchin aquaculture in Norway. Echinoderm Aquaculture, 147-173.
Kelly, M.S. (2001) Environmental parameters controlling gametogenesis in the echinoid Psammechinus miliaris. Journal of Experimental Marine Biology and Ecology, 266(1), 67-80.
Kelly, M., Carboni, S., Cook, E., & Hughes, A. (2015). Sea urchin aquaculture in Scotland. Echinoderm Aquaculture, 211-224.
Kirchhoff, N., Eddy, S., & Brown, N. (2010) Out-of-season gamete production in Strongylocentrotus droebachiensis: Photoperiod and temperature manipulation. Aquaculture, 303(1-4), 77-85.
Costa-Leal, M., Rocha, R.J.M., Rosa, R., & Calado, R. (2016). Aquaculture of marine non-food organisms: What, why and how?. Reviews in Aquaculture, 10(2), 400-423.
Liu, H., & Chang, Y.Q. (2015). Sea urchin aquaculture in China. Echinoderm Aquaculture, 127-146.
Marzinelli, E.M., Bigatti, G., Giménez, J., & Penchaszadeh, P.E. (2006). Reproduction of the sea urchin Pseudechinus magellanicus (Echinoidea: Temnopleuridae) from Golfo Nuevo, Argentina. Bulletin of Marine Science, 79(1), 127-136.
McCarron, E., Burnell, G., & Mouzakitis, G. (2010). An experimental assessment on the effects of photoperiod treatments on the somatic and gonadal growth of the juvenile European purple sea urchin Paracentrotus lividus. Aquaculture Research, 41, 1072-1081.
McClintock, J.B., & Watts, S.A. (1990). The effects of photoperiod on gametogenesis in the tropical sea urchin Eucidaris tribuloides (Lamarck) (Echinodermata: Echinoidea). Journal of Experimental Marine Biology and Ecology, 139(3), 175-184.
Meidel, S.K., & Scheibling, R.E. (1998) Annual reproductive cycle of the green sea urchin, Strongylocentrotus droebachiensis, in differing habitats in Nova Scotia, Canada. Marine Biology, 131, 461-478.
Mercier, A., & Hamel, J.F. (2009). Endogenous and exogenous control of gametogenesis and spawning in echinoderms. Advances in Marine Biology, 55, 1-302.
Musgrove, R.J.B. (2005). Aquaculture and Diet Development Subprogram: Postharvest Enhancement of Sea Urchin Roe for the Japanese Market. Australia: FRDC Project 99/319, SARDI Aquatic Sciences Publication No. RD03/0102.
Pearce, C.M., Daggett, T.L., & Robinson, S.M.C. (2002). Optimizing prepared feed ration for gonad production of the green sea urchin Strongylocentrotus droebachiensis. Journal of the World Aquaculture Society, 33(3), 268-277.
Pearce, C.M., Daggett, T.L., & Robinson, S.M. (2004). Effect of urchin size and diet on gonad yield and quality in the green sea urchin. Aquaculture, 223(1-4), 337-367.
Pearse, J.S., & Eernisse, D.J. (1982). Photoperiodic regulation of gametogenesis and gonadal growth in the sea star Pisaster ochraceus. Marine Biology, 67, 121-125.
Pearse, J.S., & Walker, C.W. (1986). Photoperiodic regulation of gametogenesis in a North Atlantic sea star, Asterias vulgaris. International Journal of Invertebrate Reproduction and Development, 9, 71-77.
Pérez, A.F., Boy, C., Morriconi, E., & Calvo, J. (2010). Reproductive cycle and reproductive output of the sea urchin Loxechinus albus (Echinodermata: Echinoidea) from Beagle Channel, Tierra del Fuego, Argentina. Polar Biology, 33(3), 271-280.
Rubilar, T., Epherra, L., Deias-Spreng, J., Díaz De Vivar, M.E., Avaro, M., Lawrence, A.L., & Lawrence, J.M. (2016). Ingestion, absorption and assimilation efficiencies, and production in the sea urchin Arbacia dufresnii fed a formulated feed. Journal of Shellfish Research, 35(4), 1083-1093.
Spirlet, C., Grosjean, P., & Jangoux, M. (2000). Optimization of gonad growth by manipulation of temperature and photoperiod in cultivated sea urchins, Paracentrotus lividus (Lamarck) (Echinodermata). Aquaculture, 185(1-2), 85-99.
Strathmann, R. (1987). Echinoderm larval ecology viewed from the egg. Echinoderm Studies, 2, 55-136.
Unuma, T., Konishi, K., Furuita, H., Yamamoto, T., & Akiyama, T. (1996). Seasonal changes in gonad of cultured and wild red sea urchin Pseudocentrotus depressus. Suisanzoshoku, 44(2), 169-175.
Unuma, T. (2002). Gonadal growth and its relationship to aquaculture in sea urchins. In Y. Yokota, V. Matranga, & Z. Smolenicka (Eds.), The Sea Urchin: From Basic Biology to Aquaculture (pp. 115-127). Rotterdam: A.A. Balkema Publishers.
Unuma, T. & Walker, C.W. (2010). The role of the major yolk protein in sea urchin reproduction and its relevance to aquaculture. In L. Harris, S.A. Böttger, C.W. Walker, & M.P. Lesser (Eds.), Echinoderms: Durham (pp. 437-444). London: Taylor and Francis Group.
Unuma, T., Sakai, Y., Agatsuma, Y., & Kayaba, T. (2015). Sea urchin aquaculture in Japan. Echinoderm Aquaculture, 77-126.
Vaïtilingon, D., & Williamson, J.E. (2008). WIPO Patent No. WO/2008/074084. Geneva, Switzerland: World Intellectual Property Organization.
Wangensteen, O.S., Turon, X., Casso, M., & Palacín, C. (2013). The reproductive cycle of the sea urchin Arbacia lixula in northwest Mediterranean: potential influence of temperature and photoperiod. Marine Biology, 160(12), 3157-3168.
Walker, C.W., & Lesser, M.P. (1998). Manipulation of food and photoperiod promotes out-of-season gametogenesis in the green sea urchin, Strongylocentrotus droebachiensis: implications for aquaculture. Marine Biology, 132, 663-676.
Walker, C.W., Lesser, M.P., & Unuma, T. (2013). Sea urchin gametogenesis-structural, functional and molecular/genomic biology. In: C.A. Lawrence (Ed.), Sea urchins: Biology and ecology (Vol. 3, pp. 25-44). San Diego: Elsevier Academic Press.
Walker, C.W., Böttger, S.A., Unuma, T., Watts, S.A., Harris, L.G., Lawrence, A.L., & Eddy, S.D. (2015). Enhancing the commercial quality of edible sea urchin gonads-technologies emphasizing nutritive phagocytes. Echinoderm Aquaculture, 263-286.
Watts, S.A., Lawrence, A.L., & Lawrence, J.M. (2013). Nutrition. In: J.M. Lawrence (Ed.), Sea urchins: Biology and ecology (Vol. 3, pp. 155-169). San Diego: Elsevier Academic Press.
https://revistas.ucr.ac.cr/index.php/rbt/article/view/46386
doi:10.15517/rbt.v69iSuppl.1.46386
op_rights http://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.15517/rbt.v69iSuppl.1.46386
https://doi.org/10.15517/rbt.v69iSuppl.1
container_title Revista de Biología Tropical
container_volume 69
container_issue Suppl.1
container_start_page 464
op_container_end_page 473
_version_ 1766171708518039552
spelling ftucostaricaojs:oai:portal.ucr.ac.cr:article/46386 2023-05-15T18:02:02+02:00 Photoperiod in aquaculture of the sea urchin Arbacia dufresnii (Echinodermata: Echinoidea): Effects on gamete production and maturity Fotoperiodo en la acuicultura del erizo de mar Arbacia dufresnii (Echinodermata: Echinoidea): El efecto en la producción y madurez de gametas Sepúlveda, Lucas-R. Pía-Fernandez, Jimena Vera-Piombo, Mercedes Belén-Chaar, Florencia Rubilar, Tamara 2021-03-24 application/pdf text/html https://revistas.ucr.ac.cr/index.php/rbt/article/view/46386 https://doi.org/10.15517/rbt.v69iSuppl.1.46386 eng eng Universidad de Costa Rica https://revistas.ucr.ac.cr/index.php/rbt/article/view/46386/46125 https://revistas.ucr.ac.cr/index.php/rbt/article/view/46386/46126 Anderson, M.J., Gorley, R.N., & Clarke, K.R. (2008). PERMANOVA+ for PRIMER: Guide to software and statistical methods. Plymouth, United Kingdom: Primer_E Ltd. Bay-Schmith, E., & Pearse, J.S. (1987). Effect of fixed daylengths on the photoperiodic regulation of gametogenesis in the sea urchin Strongylocentrotus purpuratus. International Journal of Invertebrate Reproduction and Development, 11(3), 287-294. Brogger, M.I., Martinez, M.I., & Penchaszadeh, P.E. (2010). Reproduction of the sea urchin Arbacia dufresnii (Echinoidea: Arbaciidae) from Golfo Nuevo, Argentina. Journal of the Marine Biological Association of the United Kingdom, 90(7), 1405-1409. Brogger, M., Gil, D.G., Rubilar, T., Martinez, M., Díaz de Vivar, M.E., Escolar, M., Epherra, L., Pérez, A., & Tablado, A. (2013). Echinoderms from Argentina: Biodiversity, distribution and current state of knowledge. In J.J. Alvarado & F. Solís-Marín (Eds.), Echinoderm Research and Diversity in Latin America (pp. 359-402). Berlín, Heidelberg: Springer-Verlag. Bromage, N., Porter, M., & Randall, C. (2001). The environmental regulation of maturation in farmed finfish with special reference to the role of photoperiod and melatonin. Aquaculture, 197, 63-98. Byrne, M. (1990). Annual reproductive cycle of the commercial sea urchin Paracentrotus lividus from an exposed intertidal and a sheltered subtidal habitat on the west coast of Ireland. Marine Biology, 104, 275-289. Cárcamo, P. (2004). Massive production of larvae and seeds of the sea urchin Loxechinus albus. In J.M. Lawrence & O. Guzmán (Eds.), Sea urchins: Fisheries and Ecology (pp. 299-306). Lancaster: DEStech Publications Inc. Devauchelle, N., & Mingant, C. (1991). Review of the reproductive physiology of the scallop, Pecten maximus, applicable to intensive aquaculture. Aquatic Living Resources, 4(1), 41-51. Díaz-Martínez J.P., Carpizo-Ituarte, E.J., & Benítez-Villalobos, F. (2019). Reproductive patterns of the black starry sea urchin Arbacia stellata in Punta Banda, Baja California, Mexico. Journal of the Marine Biological Association of the United Kingdom, 99(6), 1379-1391. Epherra, L., Gil, D.G., Rubilar, T., Perez-Gallo, S., Reartes, M.B., & Tolosano, J.A. (2014). Temporal and spatial differences in the reproductive biology of the sea urchin Arbacia dufresnii. Marine and Freshwater Research, 66, 329-342. Fernández, J.P., Epherra, L., Sepúlveda, L., & Rubilar, T. (2019). Desarrollo embrionario y larval del erizo de mar verde Arbacia dufresnii. Naturalia Patagónica, 14, 44-58. Fuji, A. (1967). Ecological studies on the growth and food consumption of Japanese common littoral sea urchin, Strongylocentrotus intermedius (A. Agassiz). Memoirs of the Faculty of Fisheries Hokkaido University, 15(2), 83-160. Gianguzza, P., & Bonaviri, C. (2013). Arbacia. In J.M. Lawrence (Ed.), Developments in Aquaculture and Fisheries Science (Vol. 38, pp. 275-283). Amsterdam: Elsevier. Harris, L.G., & Eddy, S.D. (2015). Sea urchin ecology and biology. Echinoderm Aquaculture, 1-24. James, P., Siikavuopio, S.I., & Mortensen, A. (2015). Sea urchin aquaculture in Norway. Echinoderm Aquaculture, 147-173. Kelly, M.S. (2001) Environmental parameters controlling gametogenesis in the echinoid Psammechinus miliaris. Journal of Experimental Marine Biology and Ecology, 266(1), 67-80. Kelly, M., Carboni, S., Cook, E., & Hughes, A. (2015). Sea urchin aquaculture in Scotland. Echinoderm Aquaculture, 211-224. Kirchhoff, N., Eddy, S., & Brown, N. (2010) Out-of-season gamete production in Strongylocentrotus droebachiensis: Photoperiod and temperature manipulation. Aquaculture, 303(1-4), 77-85. Costa-Leal, M., Rocha, R.J.M., Rosa, R., & Calado, R. (2016). Aquaculture of marine non-food organisms: What, why and how?. Reviews in Aquaculture, 10(2), 400-423. Liu, H., & Chang, Y.Q. (2015). Sea urchin aquaculture in China. Echinoderm Aquaculture, 127-146. Marzinelli, E.M., Bigatti, G., Giménez, J., & Penchaszadeh, P.E. (2006). Reproduction of the sea urchin Pseudechinus magellanicus (Echinoidea: Temnopleuridae) from Golfo Nuevo, Argentina. Bulletin of Marine Science, 79(1), 127-136. McCarron, E., Burnell, G., & Mouzakitis, G. (2010). An experimental assessment on the effects of photoperiod treatments on the somatic and gonadal growth of the juvenile European purple sea urchin Paracentrotus lividus. Aquaculture Research, 41, 1072-1081. McClintock, J.B., & Watts, S.A. (1990). The effects of photoperiod on gametogenesis in the tropical sea urchin Eucidaris tribuloides (Lamarck) (Echinodermata: Echinoidea). Journal of Experimental Marine Biology and Ecology, 139(3), 175-184. Meidel, S.K., & Scheibling, R.E. (1998) Annual reproductive cycle of the green sea urchin, Strongylocentrotus droebachiensis, in differing habitats in Nova Scotia, Canada. Marine Biology, 131, 461-478. Mercier, A., & Hamel, J.F. (2009). Endogenous and exogenous control of gametogenesis and spawning in echinoderms. Advances in Marine Biology, 55, 1-302. Musgrove, R.J.B. (2005). Aquaculture and Diet Development Subprogram: Postharvest Enhancement of Sea Urchin Roe for the Japanese Market. Australia: FRDC Project 99/319, SARDI Aquatic Sciences Publication No. RD03/0102. Pearce, C.M., Daggett, T.L., & Robinson, S.M.C. (2002). Optimizing prepared feed ration for gonad production of the green sea urchin Strongylocentrotus droebachiensis. Journal of the World Aquaculture Society, 33(3), 268-277. Pearce, C.M., Daggett, T.L., & Robinson, S.M. (2004). Effect of urchin size and diet on gonad yield and quality in the green sea urchin. Aquaculture, 223(1-4), 337-367. Pearse, J.S., & Eernisse, D.J. (1982). Photoperiodic regulation of gametogenesis and gonadal growth in the sea star Pisaster ochraceus. Marine Biology, 67, 121-125. Pearse, J.S., & Walker, C.W. (1986). Photoperiodic regulation of gametogenesis in a North Atlantic sea star, Asterias vulgaris. International Journal of Invertebrate Reproduction and Development, 9, 71-77. Pérez, A.F., Boy, C., Morriconi, E., & Calvo, J. (2010). Reproductive cycle and reproductive output of the sea urchin Loxechinus albus (Echinodermata: Echinoidea) from Beagle Channel, Tierra del Fuego, Argentina. Polar Biology, 33(3), 271-280. Rubilar, T., Epherra, L., Deias-Spreng, J., Díaz De Vivar, M.E., Avaro, M., Lawrence, A.L., & Lawrence, J.M. (2016). Ingestion, absorption and assimilation efficiencies, and production in the sea urchin Arbacia dufresnii fed a formulated feed. Journal of Shellfish Research, 35(4), 1083-1093. Spirlet, C., Grosjean, P., & Jangoux, M. (2000). Optimization of gonad growth by manipulation of temperature and photoperiod in cultivated sea urchins, Paracentrotus lividus (Lamarck) (Echinodermata). Aquaculture, 185(1-2), 85-99. Strathmann, R. (1987). Echinoderm larval ecology viewed from the egg. Echinoderm Studies, 2, 55-136. Unuma, T., Konishi, K., Furuita, H., Yamamoto, T., & Akiyama, T. (1996). Seasonal changes in gonad of cultured and wild red sea urchin Pseudocentrotus depressus. Suisanzoshoku, 44(2), 169-175. Unuma, T. (2002). Gonadal growth and its relationship to aquaculture in sea urchins. In Y. Yokota, V. Matranga, & Z. Smolenicka (Eds.), The Sea Urchin: From Basic Biology to Aquaculture (pp. 115-127). Rotterdam: A.A. Balkema Publishers. Unuma, T. & Walker, C.W. (2010). The role of the major yolk protein in sea urchin reproduction and its relevance to aquaculture. In L. Harris, S.A. Böttger, C.W. Walker, & M.P. Lesser (Eds.), Echinoderms: Durham (pp. 437-444). London: Taylor and Francis Group. Unuma, T., Sakai, Y., Agatsuma, Y., & Kayaba, T. (2015). Sea urchin aquaculture in Japan. Echinoderm Aquaculture, 77-126. Vaïtilingon, D., & Williamson, J.E. (2008). WIPO Patent No. WO/2008/074084. Geneva, Switzerland: World Intellectual Property Organization. Wangensteen, O.S., Turon, X., Casso, M., & Palacín, C. (2013). The reproductive cycle of the sea urchin Arbacia lixula in northwest Mediterranean: potential influence of temperature and photoperiod. Marine Biology, 160(12), 3157-3168. Walker, C.W., & Lesser, M.P. (1998). Manipulation of food and photoperiod promotes out-of-season gametogenesis in the green sea urchin, Strongylocentrotus droebachiensis: implications for aquaculture. Marine Biology, 132, 663-676. Walker, C.W., Lesser, M.P., & Unuma, T. (2013). Sea urchin gametogenesis-structural, functional and molecular/genomic biology. In: C.A. Lawrence (Ed.), Sea urchins: Biology and ecology (Vol. 3, pp. 25-44). San Diego: Elsevier Academic Press. Walker, C.W., Böttger, S.A., Unuma, T., Watts, S.A., Harris, L.G., Lawrence, A.L., & Eddy, S.D. (2015). Enhancing the commercial quality of edible sea urchin gonads-technologies emphasizing nutritive phagocytes. Echinoderm Aquaculture, 263-286. Watts, S.A., Lawrence, A.L., & Lawrence, J.M. (2013). Nutrition. In: J.M. Lawrence (Ed.), Sea urchins: Biology and ecology (Vol. 3, pp. 155-169). San Diego: Elsevier Academic Press. https://revistas.ucr.ac.cr/index.php/rbt/article/view/46386 doi:10.15517/rbt.v69iSuppl.1.46386 http://creativecommons.org/licenses/by/4.0 CC-BY Revista Biología Tropical; v. 69 n. S1 (2021): Volumen 69 – Suplemento 1 – Marzo 2021: Estudios latinoamericanos en equinodermos V; S464-S473 Revista de Biología Tropical; Vol 69 No S1 (2021): Volume 69 – Supplement 1 – March 2021: Research on Echinoderms in Latin America V; S464-S473 Revista de Biología Tropical; Vol. 69 Núm. S1 (2021): Volumen 69 – Suplemento 1 – Marzo 2021: Estudios latinoamericanos en equinodermos V; S464-S473 2215-2075 0034-7744 10.15517/rbt.v69iSuppl.1 gonad productivity echinoderm echinoid aquaculture mature gametes productividad gonadal equinodermo equinoideo acuacultura gametas maduras info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2021 ftucostaricaojs https://doi.org/10.15517/rbt.v69iSuppl.1.46386 https://doi.org/10.15517/rbt.v69iSuppl.1 2022-07-06T23:30:40Z Introduction: Photoperiod is, together with temperature and food availability, one of the main stimuli in the regulation of gametogenesis in a wide variety of species. Objective: To evaluate the effect of photoperiod on the production of mature gametes in cultured Arbacia dufresnii. Methods: An experiment was carried out with three varying light-dark regimes/treatments: constant light (24 h light), neutral photoperiod (12 h light, 12 h darkness), and constant darkness (24 h darkness). Twenty females were used in each treatment. All were induced to spawn and, ten randomly selected females from each treatment were induced to spawn again after 30 days. After 60 days, spawning was induced in the remaining females. The gametes were collected in filtered seawater, fixed in Davidson solution, quantified and measured per individual in triplicate in a Sedgewick-Rafter chamber. To determine maturation, fertilization success was evaluated 30 minutes after fertilization. Results: Our results showed that in the aquaculture system, after only two months, mature gametes were obtained, and in the neutral light regime there were 10 times more gametes than the number produced in wild sea urchins during the spawning period in question. We also found that with a greater exposure to light, a lower number of mature gametes was produced. Conclusions: This study suggests the viability of the production of mature gametes in a short period of time as regards Arbacia dufresnii. Introducción: El fotoperiodo es, junto con la temperatura y la disponibilidad de alimentos, uno de los principales estímulos para el desarrollo de la gametogénesis en una amplia variedad de especies. Objetivo: Evaluar el efecto del fotoperiodo en la producción de gametas maduras de Arbacia dufresnii en un sistema de recirculación cerrado para determinar el mejor fotoperiodo para una acuicultura novedosa, enfocada en la producción de gametas con alta concentración de pigmentos para usos biotecnológicos. Métodos: Se realizó un experimento con tres ... Article in Journal/Newspaper Polar Biology Portal de revistas académicas de la Universidad de Costa Rica Alta Davidson ENVELOPE(-44.766,-44.766,-60.766,-60.766) Erizo ENVELOPE(-64.250,-64.250,-65.317,-65.317) Rafter ENVELOPE(-101.146,-101.146,55.620,55.620) Revista de Biología Tropical 69 Suppl.1 464 473