Problems and puzzles in echinoderm demography

Introduction: There are problems and puzzles in understanding reproduction, growth and mortality in echinoderm life cycles. Objective: Explore problems and puzzles in life cycles that are important and challenging. Methods: The literature is used to elucidate problems associated with all life stages...

Full description

Bibliographic Details
Published in:Revista de Biología Tropical
Main Author: Ebert, Thomas A.
Format: Article in Journal/Newspaper
Language:English
Published: Universidad de Costa Rica 2021
Subjects:
Online Access:https://revistas.ucr.ac.cr/index.php/rbt/article/view/46318
https://doi.org/10.15517/rbt.v69iSuppl.1.46318
id ftucostaricaojs:oai:portal.ucr.ac.cr:article/46318
record_format openpolar
institution Open Polar
collection Portal de revistas académicas de la Universidad de Costa Rica
op_collection_id ftucostaricaojs
language English
topic echinoderm
life-cycle
plankton
connectivity
growth
mortality
reproduction
equinodermos
ciclo de vida
plancton
conectividad
crecimiento
mortalidad
reproducción
spellingShingle echinoderm
life-cycle
plankton
connectivity
growth
mortality
reproduction
equinodermos
ciclo de vida
plancton
conectividad
crecimiento
mortalidad
reproducción
Ebert, Thomas A.
Problems and puzzles in echinoderm demography
topic_facet echinoderm
life-cycle
plankton
connectivity
growth
mortality
reproduction
equinodermos
ciclo de vida
plancton
conectividad
crecimiento
mortalidad
reproducción
description Introduction: There are problems and puzzles in understanding reproduction, growth and mortality in echinoderm life cycles. Objective: Explore problems and puzzles in life cycles that are important and challenging. Methods: The literature is used to elucidate problems associated with all life stages. Results: Sources of larvae that settle at a site are explored using oceanographic modelling and genetic methods. There are few studies that have estimated larval mortality in the plankton under field conditions and results differ from experimental results or patterns of settlement. In a small number of studies, mortality rate of newly settled larvae appears to change rapidly as individuals grow. There are problems measuring size, and measurement bias that interferes with many tagging methods used to estimate growth. There also are problems with the use of natural growth lines and commonly used software to estimate both growth and mortality from size-frequency data. An interesting puzzle is that echinoderms may show negative senescence with mortality rate decreasing with size. There is a problem in fertilization success based on density so there should not be rare species where sexes are separate with free spawning of gametes yet there seem to be rare echinoderms. Conclusions: All parts of echinoderm life cycles provide problems and puzzles that are important and challenging. Introducción: Existen problemas y acertijos en la comprensión de la reproducción, el crecimiento y la mortalidad en los ciclos de vida de los equinodermos. Objetivo: Explorar los problemas y acertijos en los ciclos de vida que son importantes y desafiantes. Métodos: La literatura es usada para dilucidar los problemas asociados con todas las etapas de vida. Resultados: Las fuentes de larvas que se asientan en un sitio se exploran usando modelos oceanográficos y métodos genéticos. Existen pocos estudios que han estimado la mortalidad larval del plancton bajo condiciones de campo y los resultados difieren de los resultados experimentales o los ...
format Article in Journal/Newspaper
author Ebert, Thomas A.
author_facet Ebert, Thomas A.
author_sort Ebert, Thomas A.
title Problems and puzzles in echinoderm demography
title_short Problems and puzzles in echinoderm demography
title_full Problems and puzzles in echinoderm demography
title_fullStr Problems and puzzles in echinoderm demography
title_full_unstemmed Problems and puzzles in echinoderm demography
title_sort problems and puzzles in echinoderm demography
publisher Universidad de Costa Rica
publishDate 2021
url https://revistas.ucr.ac.cr/index.php/rbt/article/view/46318
https://doi.org/10.15517/rbt.v69iSuppl.1.46318
genre Berichte zur Polarforschung
Polarforschung
genre_facet Berichte zur Polarforschung
Polarforschung
op_source Revista Biología Tropical; v. 69 n. S1 (2021): Volumen 69 – Suplemento 1 – Marzo 2021: Estudios latinoamericanos en equinodermos V; S1-S13
Revista de Biología Tropical; Vol 69 No S1 (2021): Volume 69 – Supplement 1 – March 2021: Research on Echinoderms in Latin America V; S1-S13
Revista de Biología Tropical; Vol. 69 Núm. S1 (2021): Volumen 69 – Suplemento 1 – Marzo 2021: Estudios latinoamericanos en equinodermos V; S1-S13
2215-2075
0034-7744
10.15517/rbt.v69iSuppl.1
op_relation https://revistas.ucr.ac.cr/index.php/rbt/article/view/46318/46039
https://revistas.ucr.ac.cr/index.php/rbt/article/view/46318/46040
Austin, W.C., & Hadfield, M.G. (1980). Ophiuroidea: The brittle stars. In R.H. Morris, D.P. Abbott, & E.C. Haderlie (Eds.), Intertidal Invertebrates of California (pp. 146-159). California: Stanford University Press.
Barrera, A.M. (2018). Estimación del crecimiento del erizo de mar Arbacia lixula (Master’s thesis). Universidad de La Laguna, Tenerife, Canary Islands, Spain.
Basch, L.V., & Tegner, M.J. (2007). Reproductive responses of purple sea urchin (Strongylocentrotus purpuratus) populations to environmental conditions across a coastal depth gradient. Bulletin of Marine Science, 81(2), 255-282.
Blanco, M., Ospina-Álvarez, A., Navarrete, S.A., & Fernández, M. (2019). Influence of larval traits on dispersal and connectivity patterns of two exploited marine invertebrates in central Chile. Marine Ecology Progress Series, 612, 43-64.
Brey, T., Pearse, J., Basch, L., McClintock, J., & Slattery, M. (1995). Growth and production of Sterechinus neumayeri (Echinoidea: Echinodermata) in McMurdo Sound, Antarctica. Marine Biology, 124, 279-292.
Cabanac, A., & Himmelman, J.H. (1996). Population structure of the sand dollar Echinarachnius parma in the subtidal zone of the northern Gulf of St. Lawrence, eastern Canada. Canadian Journal of Zoology, 74(4), 698-709.
Casilagan, I.L.N., Juinio-Meñez, M.A., & Crandall, E.D. (2013). Genetic diversity, population structure, and demographic history of exploited sea urchin populations (Tripneustes gratilla) in the Philippines. Journal of Experimental Marine Biology and Ecology, 449, 284-293.
Cho, W., & Shank, T.M. (2010). Incongruent patterns of genetic connectivity among four ophiuroid species with differing coral host specificity on North Atlantic seamounts. Marine Ecology, 31(S1), 121-143.
Cocanour, B.A. (1969). Growth and reproduction of the sand dollar, Echinarachnius parma (Echinodermata: Echinoidea) (Doctoral thesis). University of Maine, Orono, USA.
Cowen, R.K., Gawarkiewicz, G., Pineda, J., Thorrold, S.R., & Werner, F.E. (2007). Population connectivity in marine systems: An overview. Oceanography, 20(3), 14-21.
Dahm, C. (1996). Ökologie und Populationsdynamik antarktischer Ophiuroiden (Echinodermata). Berichte zur Polarforschung, 194, 1-289.
Deutler, F. (1926). Über das Wachstum des Seeigelskeletts. Zoologische Jahrbücher. Abteilung für Anatomie und Ontogenie der Tiere, 48, 119-200.
Ebert, T.A. (1967). Growth and repair of spines in the sea urchin Strongylocentrotus purpuratus (Stimpson). Biological Bulletin, 133, 141-149.
Ebert, T.A. (1982). Longevity, life history, and relative body wall size in sea urchins. Ecological Monographs, 52, 353-394.
Ebert, T.A. (2010). Dynamics of Holothuria atra at Enewetak Atoll, Republic of the Marshall Islands, based on tetracycline tagging. In L.G.Harris, S.A. Böttger, C.W. Walker, & M.P. Lesser (Eds.), Echinoderms: Durham (pp. 609-614). The Netherlands: CRC Press/Balkema.
Ebert, T.A. (2013). Use of diverse growth models to estimate annual survival from mean size in a sample: Examples using sea urchins. Cahiers de Biologie Marine, 54, 605-613.
Ebert, T.A. (2019). Negative senescence in sea urchins. Experimental Gerontology, 122, 92-98.
Ebert, T.A., & Russell, M.P. (1992). Growth and mortality estimates for red sea urchin, Strongylocentrotus franciscanus, from San Nicolas Island, California. Marine Ecology Progress Series, 81, 31-41.
Ebert, T.A., Schroeter, S.C., Dixon, J.D., & P. Kalvass. P. (1994). Settlement patterns of red and purple sea urchins (Strongylocentrotus franciscanus and S. purpuratus) in California, USA. Marine Ecology Progress Series, 111, 41-52.
Ebert, T.A., & Janies, D.A. (2020). Modeling the life cycle of echinoderm larvae clones. Bulletin of Marine Science, 96(1), 221-228.
Edmands, S., Moberg, P.E., & Burton, R.S. (1996). Allozyme and mitochondrial DNA evidence of population subdivision in the purple sea urchin Strongylocentrotus purpuratus. Marine Biology, 126, 443-450.
Emlet, R.B. (1985). Crystal axes in recent and fossil adult Echinoids indicate trophic mode in larval development. Science, 230, 937-940.
Finch, C. (1990). Longevity, Senescence, and the Genome. Illinois: University of Chicago Press.
Flowers, J.M., Schroeter, S.C., & Burton, R.S. (2002). The recruitment sweepstakes has many winners: genetic evidence from the sea urchin Strongylocentrotus purpuratus. Evolution, 56(7), 1445-1453.
Gage, J.D. (1990). Skeletal growth bands in brittle stars: microstructure and significance as age markers. Journal of the Marine Biological Association of the United Kingdom, 70(1), 209-224.
Gordon, I. (1926). The development of the calcareous test of Echinus miliaris. Philosophical Transactions of the Royal Society of London. Series B, 214, 259-312.
Gorzelak, P., Stolarski, J., Dubois, P. Kopp, C., & Meibom, A. (2011). 26Mg labeling of the sea urchin regenerating spine: Insights into echinoderm biomineralization process. Journal of Structural Biology, 176(1), 119-126.
Granja-Fernández, R., Herrero-Pérezrul, M.D., López-Pérez, R.A., Hernández, L., Rodríguez-Zaragoza, F.A., Jones, R.W., & Pineda-López, R. (2014). Ophiuroidea (Echinodermata) from coral reefs in the Mexican Pacific. ZooKeys, 406, 101-145.
Harms, S., & Winant, C.D. (1998). Characteristic patterns of the circulation in the Santa Barbara Channel. Journal of Geophysical Research, 103(C2), 3041-3065.
Heatfield, B.M. (1971). Growth of the calcareous skeleton during regeneration of spines of the Sea Urchin, Strongylocentrotus purpuratus (Stimpson): A light and scanning electron microscopic study. Journal of Morphology, 134(1), 57-89.
Hedgecock, D., Barber, P.H., & Edmands, S. (2007). Genetic approaches to measuring connectivity. Oceanography, 20(3), 70-79.
Hemery, L.G., Eléaume, M., Roussel, V., Améziane, N., Gallut, C., Steinke, D., Cruaud, C., Couloux, A., & Wilson, N.G. (2012). Comprehensive sampling reveals circumpolarity and sympatry in seven mitochondrial lineages of the Southern Ocean crinoid species Promachocrinus kerguelensis (Echinodermata). Molecular Ecology, 21, 2502-2518.
Herrero-Pérezrul, M.D., Reyes-Bonilla, H., García-Domínguez, F., & Cintra-Buenrostro, C.E. (1999). Reproduction and growth of Isostichopus fuscus (Echinodermata: Holothuroidea) in the southern Gulf of California, México. Marine Biology, 135, 521-532.
Janies, D., Hernández-Díaz, Y.Q., Solís-Marín, F.A., Lopez, K., Alexandrov, B., Galac, M., Herrera, J., Cobb, J., Ebert, T.A., & Bosch, I. (2019). Discovery of adults linked to cloning oceanic starfish larvae (Oreaster, Asteroidea: Echinodermata). Biological Bulletin, 236(3), 174-185.
Johnson K.B., & Shanks, A.L. (2003). Low rates of predation on planktonic marine invertebrate larvae. Marine Ecology Progress Series, 248, 125-139.
Keesing, J.K., Halford, A.R., & Hall, K.C. (2018). Mortality rates of small juvenile crown-of-thorns starfish Acanthaster planci on the Great Barrier Reef: implications for population size and larval settlement thresholds for outbreaks. Marine Ecology Progress Series, 597, 179-190.
Keever, C.C., Sunday, J., Puritz, J.B., Addison, J.A., Toonen, R.J., Grosberg, R.K., & Hart, M. W. (2009). Discordant distribution of populations and genetic variation in a sea star with high dispersal potential. Evolution, 63(12), 3214-3227.
Lamare, M.D. & Barker, M.F. (1999). In situ estimates of larval development and mortality in the New Zealand sea urchin Evechinus chloroticus (Echinodermata: Echinoidea). Marine Ecology Progress Series, 180, 197-211.
Levin, L.A. (2006). Recent progress in understanding larval dispersal: new directions and digressions. Integrative and Comparative Biology, 46(3), 282-297.
Marcus, N.H. (1977). Genetic variation within and between geographically separated populations of the sea urchin, Arbacia punctulata. Biological Bulletin, 153(3), 560-576.
Miller, K.M., Supernault, K.J., Li, S., & Withler, R.E. (2006). Population structure in two marine invertebrate species (Panopea abrupta and Strongylocentrotus franciscanus) targeted for aquaculture and enhancement in British Columbia. Journal of Shellfish Research, 25(1), 33-42.
Moore, H.B. (1935). A comparison of the biology of Echinus esculentus in different habitats. Part II. Journal of the Marine Biological Association of the United Kingdom, 20, 109-128.
Muscat, A.M. (1975). Reproduction and growth in the ophiuroid, Ophionereis annulata (Master’s thesis). San Diego State University, San Diego, California, USA.
Nichols, D., Sime, A.A.T., & Bishop, G.M. (1985). Growth in populations of the sea-urchin Echinus esculentus L. (Echinodermata: Echinoidea) from the English Channel and Firth of Clyde. Journal of Experimental Marine Biology and Ecology, 86(3), 219-228.
Olguín-Espinoza, I. (2003). Speciation in marine systems: the case study of the sea urchin Arbacia incisa (Agassiz 1863) (Doctoral thesis) University of California Davis and San Diego State University, California, USA.
Olivares-Bañuelos, N.C, Enríquez-Paredes, L.M., Ladah, L.B., De La Rosa-Vélez, J. (2008) Population structure of purple sea urchin Strongylocentrotus purpuratus along the Baja California peninsula. Fisheries Science, 74, 804-812.
Ouréns, R., Flores, L., Fernández, L., & Freire, J. (2013). Habitat and density-dependent growth of the sea urchin Paracentrotus lividus in Galicia (NW Spain). Journal of Sea Research, 76, 50-60.
Pineda, J., Hare, J.A., & Sponaugle, S. (2007). Larval transport and dispersal in the coastal ocean and consequences for population connectivity. Oceanography, 20(3), 22-39.
op_rights http://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.15517/rbt.v69iSuppl.1.46318
https://doi.org/10.15517/rbt.v69iSuppl.1
container_title Revista de Biología Tropical
container_volume 69
container_issue Suppl.1
container_start_page 1
op_container_end_page 13
_version_ 1766376191351062528
spelling ftucostaricaojs:oai:portal.ucr.ac.cr:article/46318 2023-05-15T15:42:28+02:00 Problems and puzzles in echinoderm demography Problemas y acertijos en la demografía de los equinodermos Ebert, Thomas A. 2021-03-22 application/pdf text/html https://revistas.ucr.ac.cr/index.php/rbt/article/view/46318 https://doi.org/10.15517/rbt.v69iSuppl.1.46318 eng eng Universidad de Costa Rica https://revistas.ucr.ac.cr/index.php/rbt/article/view/46318/46039 https://revistas.ucr.ac.cr/index.php/rbt/article/view/46318/46040 Austin, W.C., & Hadfield, M.G. (1980). Ophiuroidea: The brittle stars. In R.H. Morris, D.P. Abbott, & E.C. Haderlie (Eds.), Intertidal Invertebrates of California (pp. 146-159). California: Stanford University Press. Barrera, A.M. (2018). Estimación del crecimiento del erizo de mar Arbacia lixula (Master’s thesis). Universidad de La Laguna, Tenerife, Canary Islands, Spain. Basch, L.V., & Tegner, M.J. (2007). Reproductive responses of purple sea urchin (Strongylocentrotus purpuratus) populations to environmental conditions across a coastal depth gradient. Bulletin of Marine Science, 81(2), 255-282. Blanco, M., Ospina-Álvarez, A., Navarrete, S.A., & Fernández, M. (2019). Influence of larval traits on dispersal and connectivity patterns of two exploited marine invertebrates in central Chile. Marine Ecology Progress Series, 612, 43-64. Brey, T., Pearse, J., Basch, L., McClintock, J., & Slattery, M. (1995). Growth and production of Sterechinus neumayeri (Echinoidea: Echinodermata) in McMurdo Sound, Antarctica. Marine Biology, 124, 279-292. Cabanac, A., & Himmelman, J.H. (1996). Population structure of the sand dollar Echinarachnius parma in the subtidal zone of the northern Gulf of St. Lawrence, eastern Canada. Canadian Journal of Zoology, 74(4), 698-709. Casilagan, I.L.N., Juinio-Meñez, M.A., & Crandall, E.D. (2013). Genetic diversity, population structure, and demographic history of exploited sea urchin populations (Tripneustes gratilla) in the Philippines. Journal of Experimental Marine Biology and Ecology, 449, 284-293. Cho, W., & Shank, T.M. (2010). Incongruent patterns of genetic connectivity among four ophiuroid species with differing coral host specificity on North Atlantic seamounts. Marine Ecology, 31(S1), 121-143. Cocanour, B.A. (1969). Growth and reproduction of the sand dollar, Echinarachnius parma (Echinodermata: Echinoidea) (Doctoral thesis). University of Maine, Orono, USA. Cowen, R.K., Gawarkiewicz, G., Pineda, J., Thorrold, S.R., & Werner, F.E. (2007). Population connectivity in marine systems: An overview. Oceanography, 20(3), 14-21. Dahm, C. (1996). Ökologie und Populationsdynamik antarktischer Ophiuroiden (Echinodermata). Berichte zur Polarforschung, 194, 1-289. Deutler, F. (1926). Über das Wachstum des Seeigelskeletts. Zoologische Jahrbücher. Abteilung für Anatomie und Ontogenie der Tiere, 48, 119-200. Ebert, T.A. (1967). Growth and repair of spines in the sea urchin Strongylocentrotus purpuratus (Stimpson). Biological Bulletin, 133, 141-149. Ebert, T.A. (1982). Longevity, life history, and relative body wall size in sea urchins. Ecological Monographs, 52, 353-394. Ebert, T.A. (2010). Dynamics of Holothuria atra at Enewetak Atoll, Republic of the Marshall Islands, based on tetracycline tagging. In L.G.Harris, S.A. Böttger, C.W. Walker, & M.P. Lesser (Eds.), Echinoderms: Durham (pp. 609-614). The Netherlands: CRC Press/Balkema. Ebert, T.A. (2013). Use of diverse growth models to estimate annual survival from mean size in a sample: Examples using sea urchins. Cahiers de Biologie Marine, 54, 605-613. Ebert, T.A. (2019). Negative senescence in sea urchins. Experimental Gerontology, 122, 92-98. Ebert, T.A., & Russell, M.P. (1992). Growth and mortality estimates for red sea urchin, Strongylocentrotus franciscanus, from San Nicolas Island, California. Marine Ecology Progress Series, 81, 31-41. Ebert, T.A., Schroeter, S.C., Dixon, J.D., & P. Kalvass. P. (1994). Settlement patterns of red and purple sea urchins (Strongylocentrotus franciscanus and S. purpuratus) in California, USA. Marine Ecology Progress Series, 111, 41-52. Ebert, T.A., & Janies, D.A. (2020). Modeling the life cycle of echinoderm larvae clones. Bulletin of Marine Science, 96(1), 221-228. Edmands, S., Moberg, P.E., & Burton, R.S. (1996). Allozyme and mitochondrial DNA evidence of population subdivision in the purple sea urchin Strongylocentrotus purpuratus. Marine Biology, 126, 443-450. Emlet, R.B. (1985). Crystal axes in recent and fossil adult Echinoids indicate trophic mode in larval development. Science, 230, 937-940. Finch, C. (1990). Longevity, Senescence, and the Genome. Illinois: University of Chicago Press. Flowers, J.M., Schroeter, S.C., & Burton, R.S. (2002). The recruitment sweepstakes has many winners: genetic evidence from the sea urchin Strongylocentrotus purpuratus. Evolution, 56(7), 1445-1453. Gage, J.D. (1990). Skeletal growth bands in brittle stars: microstructure and significance as age markers. Journal of the Marine Biological Association of the United Kingdom, 70(1), 209-224. Gordon, I. (1926). The development of the calcareous test of Echinus miliaris. Philosophical Transactions of the Royal Society of London. Series B, 214, 259-312. Gorzelak, P., Stolarski, J., Dubois, P. Kopp, C., & Meibom, A. (2011). 26Mg labeling of the sea urchin regenerating spine: Insights into echinoderm biomineralization process. Journal of Structural Biology, 176(1), 119-126. Granja-Fernández, R., Herrero-Pérezrul, M.D., López-Pérez, R.A., Hernández, L., Rodríguez-Zaragoza, F.A., Jones, R.W., & Pineda-López, R. (2014). Ophiuroidea (Echinodermata) from coral reefs in the Mexican Pacific. ZooKeys, 406, 101-145. Harms, S., & Winant, C.D. (1998). Characteristic patterns of the circulation in the Santa Barbara Channel. Journal of Geophysical Research, 103(C2), 3041-3065. Heatfield, B.M. (1971). Growth of the calcareous skeleton during regeneration of spines of the Sea Urchin, Strongylocentrotus purpuratus (Stimpson): A light and scanning electron microscopic study. Journal of Morphology, 134(1), 57-89. Hedgecock, D., Barber, P.H., & Edmands, S. (2007). Genetic approaches to measuring connectivity. Oceanography, 20(3), 70-79. Hemery, L.G., Eléaume, M., Roussel, V., Améziane, N., Gallut, C., Steinke, D., Cruaud, C., Couloux, A., & Wilson, N.G. (2012). Comprehensive sampling reveals circumpolarity and sympatry in seven mitochondrial lineages of the Southern Ocean crinoid species Promachocrinus kerguelensis (Echinodermata). Molecular Ecology, 21, 2502-2518. Herrero-Pérezrul, M.D., Reyes-Bonilla, H., García-Domínguez, F., & Cintra-Buenrostro, C.E. (1999). Reproduction and growth of Isostichopus fuscus (Echinodermata: Holothuroidea) in the southern Gulf of California, México. Marine Biology, 135, 521-532. Janies, D., Hernández-Díaz, Y.Q., Solís-Marín, F.A., Lopez, K., Alexandrov, B., Galac, M., Herrera, J., Cobb, J., Ebert, T.A., & Bosch, I. (2019). Discovery of adults linked to cloning oceanic starfish larvae (Oreaster, Asteroidea: Echinodermata). Biological Bulletin, 236(3), 174-185. Johnson K.B., & Shanks, A.L. (2003). Low rates of predation on planktonic marine invertebrate larvae. Marine Ecology Progress Series, 248, 125-139. Keesing, J.K., Halford, A.R., & Hall, K.C. (2018). Mortality rates of small juvenile crown-of-thorns starfish Acanthaster planci on the Great Barrier Reef: implications for population size and larval settlement thresholds for outbreaks. Marine Ecology Progress Series, 597, 179-190. Keever, C.C., Sunday, J., Puritz, J.B., Addison, J.A., Toonen, R.J., Grosberg, R.K., & Hart, M. W. (2009). Discordant distribution of populations and genetic variation in a sea star with high dispersal potential. Evolution, 63(12), 3214-3227. Lamare, M.D. & Barker, M.F. (1999). In situ estimates of larval development and mortality in the New Zealand sea urchin Evechinus chloroticus (Echinodermata: Echinoidea). Marine Ecology Progress Series, 180, 197-211. Levin, L.A. (2006). Recent progress in understanding larval dispersal: new directions and digressions. Integrative and Comparative Biology, 46(3), 282-297. Marcus, N.H. (1977). Genetic variation within and between geographically separated populations of the sea urchin, Arbacia punctulata. Biological Bulletin, 153(3), 560-576. Miller, K.M., Supernault, K.J., Li, S., & Withler, R.E. (2006). Population structure in two marine invertebrate species (Panopea abrupta and Strongylocentrotus franciscanus) targeted for aquaculture and enhancement in British Columbia. Journal of Shellfish Research, 25(1), 33-42. Moore, H.B. (1935). A comparison of the biology of Echinus esculentus in different habitats. Part II. Journal of the Marine Biological Association of the United Kingdom, 20, 109-128. Muscat, A.M. (1975). Reproduction and growth in the ophiuroid, Ophionereis annulata (Master’s thesis). San Diego State University, San Diego, California, USA. Nichols, D., Sime, A.A.T., & Bishop, G.M. (1985). Growth in populations of the sea-urchin Echinus esculentus L. (Echinodermata: Echinoidea) from the English Channel and Firth of Clyde. Journal of Experimental Marine Biology and Ecology, 86(3), 219-228. Olguín-Espinoza, I. (2003). Speciation in marine systems: the case study of the sea urchin Arbacia incisa (Agassiz 1863) (Doctoral thesis) University of California Davis and San Diego State University, California, USA. Olivares-Bañuelos, N.C, Enríquez-Paredes, L.M., Ladah, L.B., De La Rosa-Vélez, J. (2008) Population structure of purple sea urchin Strongylocentrotus purpuratus along the Baja California peninsula. Fisheries Science, 74, 804-812. Ouréns, R., Flores, L., Fernández, L., & Freire, J. (2013). Habitat and density-dependent growth of the sea urchin Paracentrotus lividus in Galicia (NW Spain). Journal of Sea Research, 76, 50-60. Pineda, J., Hare, J.A., & Sponaugle, S. (2007). Larval transport and dispersal in the coastal ocean and consequences for population connectivity. Oceanography, 20(3), 22-39. http://creativecommons.org/licenses/by/4.0 CC-BY Revista Biología Tropical; v. 69 n. S1 (2021): Volumen 69 – Suplemento 1 – Marzo 2021: Estudios latinoamericanos en equinodermos V; S1-S13 Revista de Biología Tropical; Vol 69 No S1 (2021): Volume 69 – Supplement 1 – March 2021: Research on Echinoderms in Latin America V; S1-S13 Revista de Biología Tropical; Vol. 69 Núm. S1 (2021): Volumen 69 – Suplemento 1 – Marzo 2021: Estudios latinoamericanos en equinodermos V; S1-S13 2215-2075 0034-7744 10.15517/rbt.v69iSuppl.1 echinoderm life-cycle plankton connectivity growth mortality reproduction equinodermos ciclo de vida plancton conectividad crecimiento mortalidad reproducción info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2021 ftucostaricaojs https://doi.org/10.15517/rbt.v69iSuppl.1.46318 https://doi.org/10.15517/rbt.v69iSuppl.1 2022-07-06T23:30:40Z Introduction: There are problems and puzzles in understanding reproduction, growth and mortality in echinoderm life cycles. Objective: Explore problems and puzzles in life cycles that are important and challenging. Methods: The literature is used to elucidate problems associated with all life stages. Results: Sources of larvae that settle at a site are explored using oceanographic modelling and genetic methods. There are few studies that have estimated larval mortality in the plankton under field conditions and results differ from experimental results or patterns of settlement. In a small number of studies, mortality rate of newly settled larvae appears to change rapidly as individuals grow. There are problems measuring size, and measurement bias that interferes with many tagging methods used to estimate growth. There also are problems with the use of natural growth lines and commonly used software to estimate both growth and mortality from size-frequency data. An interesting puzzle is that echinoderms may show negative senescence with mortality rate decreasing with size. There is a problem in fertilization success based on density so there should not be rare species where sexes are separate with free spawning of gametes yet there seem to be rare echinoderms. Conclusions: All parts of echinoderm life cycles provide problems and puzzles that are important and challenging. Introducción: Existen problemas y acertijos en la comprensión de la reproducción, el crecimiento y la mortalidad en los ciclos de vida de los equinodermos. Objetivo: Explorar los problemas y acertijos en los ciclos de vida que son importantes y desafiantes. Métodos: La literatura es usada para dilucidar los problemas asociados con todas las etapas de vida. Resultados: Las fuentes de larvas que se asientan en un sitio se exploran usando modelos oceanográficos y métodos genéticos. Existen pocos estudios que han estimado la mortalidad larval del plancton bajo condiciones de campo y los resultados difieren de los resultados experimentales o los ... Article in Journal/Newspaper Berichte zur Polarforschung Polarforschung Portal de revistas académicas de la Universidad de Costa Rica Revista de Biología Tropical 69 Suppl.1 1 13