Abundance, diversity and metabolic print of nematod communities in different life zones of the Huetar Norte region of Costa Rica

Soil biotic communities represent 25 % of the existing global diversity, therefore their study is important for their conservation and sustainable use. Among edaphic biota, nematodes are considered ecologically important as environmental indicators. Tools like the maturity indexes, food web diagnost...

Full description

Bibliographic Details
Published in:Revista de Biología Tropical
Main Author: Varela Benavides, Ingrid
Format: Article in Journal/Newspaper
Language:Spanish
English
Published: Universidad de Costa Rica 2018
Subjects:
Online Access:https://revistas.ucr.ac.cr/index.php/rbt/article/view/33219
https://doi.org/10.15517/rbt.v66i4.33219
id ftucostaricaojs:oai:portal.ucr.ac.cr:article/33219
record_format openpolar
institution Open Polar
collection Portal de revistas académicas de la Universidad de Costa Rica
op_collection_id ftucostaricaojs
language Spanish
English
topic nematode communities
life zones in Costa Rica
microclimates
metabolic footprints
maturity indexes
comunidades de nematodos
zonas de vida
microclimas
huellas metabólicas
índices de madurez
spellingShingle nematode communities
life zones in Costa Rica
microclimates
metabolic footprints
maturity indexes
comunidades de nematodos
zonas de vida
microclimas
huellas metabólicas
índices de madurez
Varela Benavides, Ingrid
Abundance, diversity and metabolic print of nematod communities in different life zones of the Huetar Norte region of Costa Rica
topic_facet nematode communities
life zones in Costa Rica
microclimates
metabolic footprints
maturity indexes
comunidades de nematodos
zonas de vida
microclimas
huellas metabólicas
índices de madurez
description Soil biotic communities represent 25 % of the existing global diversity, therefore their study is important for their conservation and sustainable use. Among edaphic biota, nematodes are considered ecologically important as environmental indicators. Tools like the maturity indexes, food web diagnostics and metabolic footprints are used in assessing the ecosystem in relation to the impact contaminants and other stressors, as well as monitoring and measuring changes in the structure and dynamics of the food webs and, more recently, to study the impact of climate factors on the nematode community. Costa Rica is a tropical country with a variety of miroclimates in a small area; this attribute is reflected in the different life zones described by Holdridge for Costa Rica, which differ in their patterns of precipitation, temperature and evapotranspiration patterns. In this research, the diversity of climates was exploited in order to contribute with the knowledge of the nematode communities of several ecosystems within different life zones. For this purpose, samples were taken in several ecosystems located in different life zones in the Region Huetar Norte from Costa Rica. High variation in taxa abundance between different management types within ecosystems was obtained. However, the low availability of replicates for proper statistical analyzes made the mean estimations numerically unprovable. The maturity indexes and the food web diagnosis did not show statistical differences between the studied zones, while, the metabolic footprints were positively correlated to life zones. The metabolic footprint decreased in the different life zones in correspondence with the increase of the average annual temperature reported for each one. The metabolic footprints associated with the decomposition of organic matter (fungivores, bacterivores, and enrichment) had the strongest correlations. The proposition is that the increase in metabolic footprints while the temperature decreases, reflects a change in the dynamics of chemical ...
format Article in Journal/Newspaper
author Varela Benavides, Ingrid
author_facet Varela Benavides, Ingrid
author_sort Varela Benavides, Ingrid
title Abundance, diversity and metabolic print of nematod communities in different life zones of the Huetar Norte region of Costa Rica
title_short Abundance, diversity and metabolic print of nematod communities in different life zones of the Huetar Norte region of Costa Rica
title_full Abundance, diversity and metabolic print of nematod communities in different life zones of the Huetar Norte region of Costa Rica
title_fullStr Abundance, diversity and metabolic print of nematod communities in different life zones of the Huetar Norte region of Costa Rica
title_full_unstemmed Abundance, diversity and metabolic print of nematod communities in different life zones of the Huetar Norte region of Costa Rica
title_sort abundance, diversity and metabolic print of nematod communities in different life zones of the huetar norte region of costa rica
publisher Universidad de Costa Rica
publishDate 2018
url https://revistas.ucr.ac.cr/index.php/rbt/article/view/33219
https://doi.org/10.15517/rbt.v66i4.33219
genre Polar Biology
genre_facet Polar Biology
op_source Revista Biología Tropical; v. 66 n. 4 (2018): Volumen 66 – Número regular 4 – Diciembre 2018
Revista de Biología Tropical; Vol 66 No 4 (2018): Volume 66 – Regular number 4 – December 2018
Revista de Biología Tropical; Vol. 66 Núm. 4 (2018): Volumen 66 – Número regular 4 – Diciembre 2018
2215-2075
0034-7744
10.15517/rbt.v66i4
op_relation https://revistas.ucr.ac.cr/index.php/rbt/article/view/33219/35829
https://revistas.ucr.ac.cr/index.php/rbt/article/view/33219/35923
https://revistas.ucr.ac.cr/index.php/rbt/article/view/33219/35924
Bertsch, F., & Henríquez, C. (2015). 2015: El Año Internacional de los Suelos. Agronomía Costarricense, 39(3), 149-155.
Bhusal, D. R., Tsiafouli, M. A., & Sgardelis, S. P. (2015). Temperature-based bioclimatic parameters can predict nematode metabolic footprints. Oecologia, 179(1), 187-199.
Bloemers, G. F., Hodda, M., Lambshead, P. J. D., Lawton, J. H., & Wanless, F. R. (1997). The effects of forest disturbance on diversity of tropical soil nematodes. Oecologia, 111, 575-582.
Bongers, T. (1990). The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecología, 83, 14-19.
Bongers, T., & Bongers, M. (1998). Functional diversity of nematodes. Applied Soil Ecology, 10(3), 239-251.
Culman, S. W., Young-Mathews, A., Hollander, A. D., Ferris, H., Sánchez-Moreno, S., O’Geen, A. T., & Jackson, L. E. (2010). Biodiversity is associated with indicators of soil ecosystem functions over a landscape gradient of agricultural intensification. Landscape Ecology, 25(9), 1333-1348.
Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440(7081), 165-173.
Eisenhauer, N., Cesarz, S., Koller, R., Worm, K., & Reich, P. B. (2012). Global change belowground: impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. Global Change Biology, 18(2), 435-447.
Ferris, H. (2010). Form and function: metabolic footprints of nematodes in the soil food web. European Journal of Soil Biology, 46(2), 97-104.
Ferris, H., Bongers, T., & de Goede, R. G. M. (2001). A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied Soil Ecology, 18(1), 13-29.
Ferris, H., & Bongers, T. (2009). Indices developed specifically for analysis of nematode assemblages. En M. J. Wilson, & T. Kakouli-Duarte (Eds.), Nematodes as environmental indicators (pp. 124-145). Wallingford, UK: CAB International.
Ferris, H., Griffiths, B. S., Porazinska, D. L., Powers, T. O., Wang, K. H., & Tenuta, M. (2012). Reflections on plant and soil nematode ecology: past, present and future. Journal of Nematology, 44(2), 115-126.
Gillingham, P. K., Palmer, S. C., Huntley, B., Kunin, W. E., Chipperfield, J. D., & Thomas, C. D. (2012). The relative importance of climate and habitat in determining the distributions of species at different spatial scales: a case study with ground beetles in Great Britain. Ecography, 35(9), 831-838.
Gingold, R., Moens, T., & Rocha-Olivares, A. (2013). Assessing the response of nematode communities to climate change-driven warming: a microcosm experiment. PLoS One, 8(6), e66653.
Holdridge, L. R. (1967). Life zone ecology. San José, Costa Rica: Centro Científico Tropical.
Kergunteuil, A., Campos-Herrera, R., Sánchez-Moreno, S., Vittoz, P., & Rasmann, S. (2016). The abundance, diversity, and metabolic footprint of soil nematodes is highest in high elevation alpine grasslands. Frontiers in Ecology and Evolution, 4, 1-12.
Looby, C. I., & Treseder, K. K. (2018). Shifts in soil fungi and extracellular enzyme activity with simulated climate change in a tropical montane cloud forest. Soil Biology and Biochemistry, 117, 87-96.
Mueller, K. E., Blumenthal, D. M., Carrillo, Y., Cesarz, S., Ciobanu, M., Hines, J., Pabst, S., Pendall, E., Milano, C., Wall, D. H., & Eisenhauer, N. (2016). Elevated CO2 and warming shift the functional composition of soil nematode communities in a semiarid grassland. Soil Biology and Biochemistry, 103, 46-51.
Neher, D. A. (1999). Nematode communities in organically and conventionally managed agricultural soils. Journal of. Nematology, 31, 142-154.
Neher, D. A., & Olson, R. K. (1999). Nematode communities in soils of four farm cropping management systems. Pedobiología, 43, 430-438.
Nielsen, U. N., Wall, D. H., Adams, B. J., & Virginia, R. A. (2011). Antarctic nematode communities: observed and predicted responses to climate change. Polar Biology, 34(11), 1701-1711.
Peraza, W. (2010). Nematofauna asociada a cultivo de café (Coffea arabica) orgánico y convencional en Aserrí, Costa Rica. Ingenierías & Amazonia, 3(2), 105-112.
Rodríguez, A., Muñoz, Y. E., & Pocasangre, L. E. (2011). Evaluación de nematodos de vida libre como indicadores de calidad y salud de suelos en tres sistemas de producción de banano. Tierra Tropical, 8(1), 115-125.
Salguero-Londoño, B. M. (2006). Caracterización de nematodos de vida libre como bioindicadores de calidad y salud de suelos bananeros en Costa Rica (Tesis de Maestría). Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica.
Sánchez-Moreno, S., & Talavera, M. (2013). Los nematodos como indicadores ambientales en agroecosistemas. Ecosistemas, 22(1), 50-55.
Seinhorst, J. W. (1959). A rapid method for the transfer of nematodes from fixative to anhydrous glycerine. Nematologica, 4, 67-69.
Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana, IL: University of Illinois Press.
Sieriebriennikov, B., Ferris, H., & de Goede, R. G. M. (2014). NINJA: An automated calculation system for nematode-based biological monitoring. European Journal of Soil Biology, 61, 90-93.
Suggitt, A. J., Gillingham, P. K., Hill, J. K., Huntley, B., Kunin, W. E., Roy, D. B., & Thomas, C. D. (2011). Habitat microclimates drive fine‐scale variation in extreme temperatures. Oikos, 120(1), 1-8.
Traunspurger, W., Reiff, N., Krashevska, V., Majdi, N., & Scheu, S. (2017). Diversity and distribution of soil micro-invertebrates across an altitudinal gradient in a tropical montane rainforest of Ecuador, with focus on free-living nematodes. Pedobiologia, 62, 28-35.
van Bezooijen, J. (2006). Methods and techniques for nematology. Wageningen, The Netherlands: Wageningen University Press.
Yeates, G. W. (1994). Modification and qualification of the nematode maturity index. Pedobiología, 38, 97-101.
Yeates, G. W., Bongers, T., de Goede, R. G. M., Freckman, D. W., & Georgieva, S. S. (1993). Feeding habits in soil nematode families and genera - an outline for soil ecologists. Journal of Nematology, 25, 315-331.
Zamioudis, C., & Pieterse, C. M. (2012). Modulation of host immunity by beneficial microbes. Molecular Plant-Microbe Interactions, 25(2), 139-150.
https://revistas.ucr.ac.cr/index.php/rbt/article/view/33219
doi:10.15517/rbt.v66i4.33219
op_doi https://doi.org/10.15517/rbt.v66i4.33219
https://doi.org/10.15517/rbt.v66i4
container_title Revista de Biología Tropical
container_volume 66
container_issue 4
_version_ 1766171705951125504
spelling ftucostaricaojs:oai:portal.ucr.ac.cr:article/33219 2023-05-15T18:02:02+02:00 Abundance, diversity and metabolic print of nematod communities in different life zones of the Huetar Norte region of Costa Rica Abundancia, diversidad y huella metabólica de comunidades de nematodos en diferentes zonas de vida en la Región Huetar Norte de Costa Rica. Varela Benavides, Ingrid 2018-10-22 application/pdf text/html https://revistas.ucr.ac.cr/index.php/rbt/article/view/33219 https://doi.org/10.15517/rbt.v66i4.33219 spa eng spa eng Universidad de Costa Rica https://revistas.ucr.ac.cr/index.php/rbt/article/view/33219/35829 https://revistas.ucr.ac.cr/index.php/rbt/article/view/33219/35923 https://revistas.ucr.ac.cr/index.php/rbt/article/view/33219/35924 Bertsch, F., & Henríquez, C. (2015). 2015: El Año Internacional de los Suelos. Agronomía Costarricense, 39(3), 149-155. Bhusal, D. R., Tsiafouli, M. A., & Sgardelis, S. P. (2015). Temperature-based bioclimatic parameters can predict nematode metabolic footprints. Oecologia, 179(1), 187-199. Bloemers, G. F., Hodda, M., Lambshead, P. J. D., Lawton, J. H., & Wanless, F. R. (1997). The effects of forest disturbance on diversity of tropical soil nematodes. Oecologia, 111, 575-582. Bongers, T. (1990). The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecología, 83, 14-19. Bongers, T., & Bongers, M. (1998). Functional diversity of nematodes. Applied Soil Ecology, 10(3), 239-251. Culman, S. W., Young-Mathews, A., Hollander, A. D., Ferris, H., Sánchez-Moreno, S., O’Geen, A. T., & Jackson, L. E. (2010). Biodiversity is associated with indicators of soil ecosystem functions over a landscape gradient of agricultural intensification. Landscape Ecology, 25(9), 1333-1348. Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440(7081), 165-173. Eisenhauer, N., Cesarz, S., Koller, R., Worm, K., & Reich, P. B. (2012). Global change belowground: impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. Global Change Biology, 18(2), 435-447. Ferris, H. (2010). Form and function: metabolic footprints of nematodes in the soil food web. European Journal of Soil Biology, 46(2), 97-104. Ferris, H., Bongers, T., & de Goede, R. G. M. (2001). A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied Soil Ecology, 18(1), 13-29. Ferris, H., & Bongers, T. (2009). Indices developed specifically for analysis of nematode assemblages. En M. J. Wilson, & T. Kakouli-Duarte (Eds.), Nematodes as environmental indicators (pp. 124-145). Wallingford, UK: CAB International. Ferris, H., Griffiths, B. S., Porazinska, D. L., Powers, T. O., Wang, K. H., & Tenuta, M. (2012). Reflections on plant and soil nematode ecology: past, present and future. Journal of Nematology, 44(2), 115-126. Gillingham, P. K., Palmer, S. C., Huntley, B., Kunin, W. E., Chipperfield, J. D., & Thomas, C. D. (2012). The relative importance of climate and habitat in determining the distributions of species at different spatial scales: a case study with ground beetles in Great Britain. Ecography, 35(9), 831-838. Gingold, R., Moens, T., & Rocha-Olivares, A. (2013). Assessing the response of nematode communities to climate change-driven warming: a microcosm experiment. PLoS One, 8(6), e66653. Holdridge, L. R. (1967). Life zone ecology. San José, Costa Rica: Centro Científico Tropical. Kergunteuil, A., Campos-Herrera, R., Sánchez-Moreno, S., Vittoz, P., & Rasmann, S. (2016). The abundance, diversity, and metabolic footprint of soil nematodes is highest in high elevation alpine grasslands. Frontiers in Ecology and Evolution, 4, 1-12. Looby, C. I., & Treseder, K. K. (2018). Shifts in soil fungi and extracellular enzyme activity with simulated climate change in a tropical montane cloud forest. Soil Biology and Biochemistry, 117, 87-96. Mueller, K. E., Blumenthal, D. M., Carrillo, Y., Cesarz, S., Ciobanu, M., Hines, J., Pabst, S., Pendall, E., Milano, C., Wall, D. H., & Eisenhauer, N. (2016). Elevated CO2 and warming shift the functional composition of soil nematode communities in a semiarid grassland. Soil Biology and Biochemistry, 103, 46-51. Neher, D. A. (1999). Nematode communities in organically and conventionally managed agricultural soils. Journal of. Nematology, 31, 142-154. Neher, D. A., & Olson, R. K. (1999). Nematode communities in soils of four farm cropping management systems. Pedobiología, 43, 430-438. Nielsen, U. N., Wall, D. H., Adams, B. J., & Virginia, R. A. (2011). Antarctic nematode communities: observed and predicted responses to climate change. Polar Biology, 34(11), 1701-1711. Peraza, W. (2010). Nematofauna asociada a cultivo de café (Coffea arabica) orgánico y convencional en Aserrí, Costa Rica. Ingenierías & Amazonia, 3(2), 105-112. Rodríguez, A., Muñoz, Y. E., & Pocasangre, L. E. (2011). Evaluación de nematodos de vida libre como indicadores de calidad y salud de suelos en tres sistemas de producción de banano. Tierra Tropical, 8(1), 115-125. Salguero-Londoño, B. M. (2006). Caracterización de nematodos de vida libre como bioindicadores de calidad y salud de suelos bananeros en Costa Rica (Tesis de Maestría). Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica. Sánchez-Moreno, S., & Talavera, M. (2013). Los nematodos como indicadores ambientales en agroecosistemas. Ecosistemas, 22(1), 50-55. Seinhorst, J. W. (1959). A rapid method for the transfer of nematodes from fixative to anhydrous glycerine. Nematologica, 4, 67-69. Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana, IL: University of Illinois Press. Sieriebriennikov, B., Ferris, H., & de Goede, R. G. M. (2014). NINJA: An automated calculation system for nematode-based biological monitoring. European Journal of Soil Biology, 61, 90-93. Suggitt, A. J., Gillingham, P. K., Hill, J. K., Huntley, B., Kunin, W. E., Roy, D. B., & Thomas, C. D. (2011). Habitat microclimates drive fine‐scale variation in extreme temperatures. Oikos, 120(1), 1-8. Traunspurger, W., Reiff, N., Krashevska, V., Majdi, N., & Scheu, S. (2017). Diversity and distribution of soil micro-invertebrates across an altitudinal gradient in a tropical montane rainforest of Ecuador, with focus on free-living nematodes. Pedobiologia, 62, 28-35. van Bezooijen, J. (2006). Methods and techniques for nematology. Wageningen, The Netherlands: Wageningen University Press. Yeates, G. W. (1994). Modification and qualification of the nematode maturity index. Pedobiología, 38, 97-101. Yeates, G. W., Bongers, T., de Goede, R. G. M., Freckman, D. W., & Georgieva, S. S. (1993). Feeding habits in soil nematode families and genera - an outline for soil ecologists. Journal of Nematology, 25, 315-331. Zamioudis, C., & Pieterse, C. M. (2012). Modulation of host immunity by beneficial microbes. Molecular Plant-Microbe Interactions, 25(2), 139-150. https://revistas.ucr.ac.cr/index.php/rbt/article/view/33219 doi:10.15517/rbt.v66i4.33219 Revista Biología Tropical; v. 66 n. 4 (2018): Volumen 66 – Número regular 4 – Diciembre 2018 Revista de Biología Tropical; Vol 66 No 4 (2018): Volume 66 – Regular number 4 – December 2018 Revista de Biología Tropical; Vol. 66 Núm. 4 (2018): Volumen 66 – Número regular 4 – Diciembre 2018 2215-2075 0034-7744 10.15517/rbt.v66i4 nematode communities life zones in Costa Rica microclimates metabolic footprints maturity indexes comunidades de nematodos zonas de vida microclimas huellas metabólicas índices de madurez info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2018 ftucostaricaojs https://doi.org/10.15517/rbt.v66i4.33219 https://doi.org/10.15517/rbt.v66i4 2022-06-15T23:46:51Z Soil biotic communities represent 25 % of the existing global diversity, therefore their study is important for their conservation and sustainable use. Among edaphic biota, nematodes are considered ecologically important as environmental indicators. Tools like the maturity indexes, food web diagnostics and metabolic footprints are used in assessing the ecosystem in relation to the impact contaminants and other stressors, as well as monitoring and measuring changes in the structure and dynamics of the food webs and, more recently, to study the impact of climate factors on the nematode community. Costa Rica is a tropical country with a variety of miroclimates in a small area; this attribute is reflected in the different life zones described by Holdridge for Costa Rica, which differ in their patterns of precipitation, temperature and evapotranspiration patterns. In this research, the diversity of climates was exploited in order to contribute with the knowledge of the nematode communities of several ecosystems within different life zones. For this purpose, samples were taken in several ecosystems located in different life zones in the Region Huetar Norte from Costa Rica. High variation in taxa abundance between different management types within ecosystems was obtained. However, the low availability of replicates for proper statistical analyzes made the mean estimations numerically unprovable. The maturity indexes and the food web diagnosis did not show statistical differences between the studied zones, while, the metabolic footprints were positively correlated to life zones. The metabolic footprint decreased in the different life zones in correspondence with the increase of the average annual temperature reported for each one. The metabolic footprints associated with the decomposition of organic matter (fungivores, bacterivores, and enrichment) had the strongest correlations. The proposition is that the increase in metabolic footprints while the temperature decreases, reflects a change in the dynamics of chemical ... Article in Journal/Newspaper Polar Biology Portal de revistas académicas de la Universidad de Costa Rica Revista de Biología Tropical 66 4