Machine learning tools for pattern recognition in polar climate science

This thesis explores the application of two novel machine learning approaches to the study of polar climate, with particular focus on Arctic sea ice. The first technique, complex networks, is based on an unsupervised learning approach which is able to exploit spatio-temporal patterns of variability...

Full description

Bibliographic Details
Main Author: Gregory, William J.
Other Authors: Tsamados, M, Stroeve, J
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: UCL (University College London) 2021
Subjects:
Online Access:https://discovery.ucl.ac.uk/id/eprint/10139913/1/Thesis.pdf
https://discovery.ucl.ac.uk/id/eprint/10139913/
Description
Summary:This thesis explores the application of two novel machine learning approaches to the study of polar climate, with particular focus on Arctic sea ice. The first technique, complex networks, is based on an unsupervised learning approach which is able to exploit spatio-temporal patterns of variability within geospatial time series data sets. The second, Gaussian Process Regression (GPR), is a supervised learning Bayesian inference approach which establishes a principled framework for learning functional relationships between pairs of observation points, through updating prior uncertainty in the presence of new information. These methods are applied to a variety of problems facing the polar climate community at present, although each problem can be considered as an individual component of the wider problem relating to Arctic sea ice predictability. In the first instance, the complex networks methodology is combined with GPR in order to produce skilful seasonal forecasts of pan-Arctic and regional September sea ice extents, with up to 3 months lead time. De-trended forecast skills of 0.53, 0.62, and 0.81 are achieved at 3-, 2- and 1-month lead time respectively, as well as generally highest regional predictive skill ($> 0.30$) in the Pacific sectors of the Arctic, although the ability to skilfully predict many of these regions may be changing over time. Subsequently, the GPR approach is used to combine observations from CryoSat-2, Sentinel-3A and Sentinel-3B satellite radar altimeters, in order to produce daily pan-Arctic estimates of radar freeboard, as well as uncertainty, across the 2018--2019 winter season. The empirical Bayes numerical optimisation technique is also used to derive auxiliary properties relating to the radar freeboard, including its spatial and temporal (de-)correlation length scales, allowing daily pan-Arctic maps of these fields to be generated as well. The estimated daily freeboards are consistent to CryoSat-2 and Sentinel-3 to within $< 1$ mm (standard deviations $< 6$ cm) across the ...