Measurements and modeling of near-surface radio propagation in glacial ice and implications for neutrino experiments

We present measurements of radio transmission in the ∼ 100 MHz range through a ∼ 100 m deep region below the surface of the ice at Summit Station, Greenland, called the firn. In the firn, the index of refraction changes due to the transition from snow at the surface to glacial ice below, affecting t...

Full description

Bibliographic Details
Main Authors: Deaconu, C, Vieregg, AG, Wissel, SA, Bowen, J, Chipman, S, Gupta, A, Miki, C, Nichol, RJ, Saltzberg, D
Format: Article in Journal/Newspaper
Language:English
Published: AMER PHYSICAL SOC 2018
Subjects:
Online Access:https://discovery.ucl.ac.uk/id/eprint/10056455/1/Nichol_Measurements%20and%20modeling%20of%20near-surface%20radio%20propagation%20in%20glacial%20ice%20and%20implications%20for%20neutrino%20experiments_VoR.pdf
https://discovery.ucl.ac.uk/id/eprint/10056455/
id ftucl:oai:eprints.ucl.ac.uk.OAI2:10056455
record_format openpolar
spelling ftucl:oai:eprints.ucl.ac.uk.OAI2:10056455 2023-12-24T10:17:14+01:00 Measurements and modeling of near-surface radio propagation in glacial ice and implications for neutrino experiments Deaconu, C Vieregg, AG Wissel, SA Bowen, J Chipman, S Gupta, A Miki, C Nichol, RJ Saltzberg, D 2018-08-15 text https://discovery.ucl.ac.uk/id/eprint/10056455/1/Nichol_Measurements%20and%20modeling%20of%20near-surface%20radio%20propagation%20in%20glacial%20ice%20and%20implications%20for%20neutrino%20experiments_VoR.pdf https://discovery.ucl.ac.uk/id/eprint/10056455/ eng eng AMER PHYSICAL SOC https://discovery.ucl.ac.uk/id/eprint/10056455/1/Nichol_Measurements%20and%20modeling%20of%20near-surface%20radio%20propagation%20in%20glacial%20ice%20and%20implications%20for%20neutrino%20experiments_VoR.pdf https://discovery.ucl.ac.uk/id/eprint/10056455/ open Physical Review D , 98 (4) , Article 043010. (2018) Gravitation Cosmology & Astrophysics Cosmic Ray & Astroparticle Detectors Particle Astrophysics Neutrino Detectors Article 2018 ftucl 2023-11-27T13:07:29Z We present measurements of radio transmission in the ∼ 100 MHz range through a ∼ 100 m deep region below the surface of the ice at Summit Station, Greenland, called the firn. In the firn, the index of refraction changes due to the transition from snow at the surface to glacial ice below, affecting the propagation of radio signals in that region. We compare our observations to a finite-difference time-domain (FDTD) electromagnetic wave simulation, which supports the existence of three classes of propagation: a bulk propagation ray-bending mode that leads to so-called “shadowed” regions for certain geometries of transmission, a surface-wave mode induced by the ice/air interface, and an arbitrary-depth horizontal propagation mode that requires perturbations from a smooth density gradient. In the non-shadowed region, our measurements are consistent with the bulk propagation ray-bending mode both in timing and in amplitude. We also observe signals in the shadowed region, in conflict with a bulk-propagation-only ray-bending model, but consistent with FDTD simulations using a variety of firn models for Summit Station. The amplitude and timing of our measurements in all geometries are consistent with the predictions from FDTD simulations. In the shadowed region, the amplitude of the observed signals is consistent with a best-fit coupling fraction value of 2.4% (0.06% in power) or less to a surface or horizontal propagation mode from the bulk propagation mode. The relative amplitude of observable signals in the two regions is important for experiments that aim to detect radio emission from astrophysical high-energy neutrinos interacting in glacial ice, which rely on a radio propagation model to inform simulations and perform event reconstruction. Article in Journal/Newspaper Greenland University College London: UCL Discovery Greenland
institution Open Polar
collection University College London: UCL Discovery
op_collection_id ftucl
language English
topic Gravitation
Cosmology & Astrophysics
Cosmic Ray & Astroparticle Detectors
Particle Astrophysics
Neutrino Detectors
spellingShingle Gravitation
Cosmology & Astrophysics
Cosmic Ray & Astroparticle Detectors
Particle Astrophysics
Neutrino Detectors
Deaconu, C
Vieregg, AG
Wissel, SA
Bowen, J
Chipman, S
Gupta, A
Miki, C
Nichol, RJ
Saltzberg, D
Measurements and modeling of near-surface radio propagation in glacial ice and implications for neutrino experiments
topic_facet Gravitation
Cosmology & Astrophysics
Cosmic Ray & Astroparticle Detectors
Particle Astrophysics
Neutrino Detectors
description We present measurements of radio transmission in the ∼ 100 MHz range through a ∼ 100 m deep region below the surface of the ice at Summit Station, Greenland, called the firn. In the firn, the index of refraction changes due to the transition from snow at the surface to glacial ice below, affecting the propagation of radio signals in that region. We compare our observations to a finite-difference time-domain (FDTD) electromagnetic wave simulation, which supports the existence of three classes of propagation: a bulk propagation ray-bending mode that leads to so-called “shadowed” regions for certain geometries of transmission, a surface-wave mode induced by the ice/air interface, and an arbitrary-depth horizontal propagation mode that requires perturbations from a smooth density gradient. In the non-shadowed region, our measurements are consistent with the bulk propagation ray-bending mode both in timing and in amplitude. We also observe signals in the shadowed region, in conflict with a bulk-propagation-only ray-bending model, but consistent with FDTD simulations using a variety of firn models for Summit Station. The amplitude and timing of our measurements in all geometries are consistent with the predictions from FDTD simulations. In the shadowed region, the amplitude of the observed signals is consistent with a best-fit coupling fraction value of 2.4% (0.06% in power) or less to a surface or horizontal propagation mode from the bulk propagation mode. The relative amplitude of observable signals in the two regions is important for experiments that aim to detect radio emission from astrophysical high-energy neutrinos interacting in glacial ice, which rely on a radio propagation model to inform simulations and perform event reconstruction.
format Article in Journal/Newspaper
author Deaconu, C
Vieregg, AG
Wissel, SA
Bowen, J
Chipman, S
Gupta, A
Miki, C
Nichol, RJ
Saltzberg, D
author_facet Deaconu, C
Vieregg, AG
Wissel, SA
Bowen, J
Chipman, S
Gupta, A
Miki, C
Nichol, RJ
Saltzberg, D
author_sort Deaconu, C
title Measurements and modeling of near-surface radio propagation in glacial ice and implications for neutrino experiments
title_short Measurements and modeling of near-surface radio propagation in glacial ice and implications for neutrino experiments
title_full Measurements and modeling of near-surface radio propagation in glacial ice and implications for neutrino experiments
title_fullStr Measurements and modeling of near-surface radio propagation in glacial ice and implications for neutrino experiments
title_full_unstemmed Measurements and modeling of near-surface radio propagation in glacial ice and implications for neutrino experiments
title_sort measurements and modeling of near-surface radio propagation in glacial ice and implications for neutrino experiments
publisher AMER PHYSICAL SOC
publishDate 2018
url https://discovery.ucl.ac.uk/id/eprint/10056455/1/Nichol_Measurements%20and%20modeling%20of%20near-surface%20radio%20propagation%20in%20glacial%20ice%20and%20implications%20for%20neutrino%20experiments_VoR.pdf
https://discovery.ucl.ac.uk/id/eprint/10056455/
geographic Greenland
geographic_facet Greenland
genre Greenland
genre_facet Greenland
op_source Physical Review D , 98 (4) , Article 043010. (2018)
op_relation https://discovery.ucl.ac.uk/id/eprint/10056455/1/Nichol_Measurements%20and%20modeling%20of%20near-surface%20radio%20propagation%20in%20glacial%20ice%20and%20implications%20for%20neutrino%20experiments_VoR.pdf
https://discovery.ucl.ac.uk/id/eprint/10056455/
op_rights open
_version_ 1786205214221533184