Spatial analyses of Ediacaran communities at Mistaken Point

Bedding-plane assemblages of Ediacaran fossils from Mistaken Point, Newfoundland, are among the oldest known records of complex multicellular life on Earth (dated to ~565 Ma). The in situ preservation of these sessile but otherwise deeply enigmatic organisms means that statistical analyses of specim...

Full description

Bibliographic Details
Published in:Paleobiology
Main Authors: Mitchell, Emily G., Butterfield, Nicholas J.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press 2018
Subjects:
Online Access:http://eprints.esc.cam.ac.uk/4240/
http://eprints.esc.cam.ac.uk/4240/1/Mitchell_and_Butterfield_Spatial_Analyses_of_Ediacaran_communities_at_Mistaken_Point_final_includingSI.pdf
https://doi.org/10.1017/pab.2017.35
Description
Summary:Bedding-plane assemblages of Ediacaran fossils from Mistaken Point, Newfoundland, are among the oldest known records of complex multicellular life on Earth (dated to ~565 Ma). The in situ preservation of these sessile but otherwise deeply enigmatic organisms means that statistical analyses of specimen positions can be used to illuminate their underlying ecological dynamics, including the interactions between taxa. Fossil assemblages on Mistaken Point D and E surfaces were mapped to millimeter accuracy using differentiated GPS. Spatial correlations between 10 well-defined taxa (Bradgatia, Charniid, Charniodiscus, Fractofusus, Ivesheadiomorphs, Lobate Discs, Pectinifrons, Plumeropriscum, Hiemalora, and Thectardis) were identified using Bayesian network inference (BNI), and then described and analyzed using spatial point-process analysis. BNI found that the E-surface community had a complex web of interactions and associations between taxa, with all but one taxon (Thectardis) interacting with at least one other. The unique spatial distribution of Thectardis supports previous, morphology-based arguments for its fundamentally distinct nature. BNI revealed that the D-surface community showed no interspecific interactions or associations, a pattern consistent with a homogeneous environment. On the E surface, all six of the abundant taxonomic groups (Fractofusus, Bradgatia, Charniid, Charniodiscus, Thectardis, and Plumeropriscum) were found to have a unique set of interactions with other taxa, reflecting a broad range of underlying ecological responses. Four instances of habitat associations were detected between taxa, of which two (Charniodiscus–Plumeropriscum and Plumeropriscum–Fractofusus) led to weak competition for resources. One case of preemptive competition between Charniid and Lobate Discs was detected. There were no instances of interspecific facilitation. Ivesheadiomorph interactions mirror those of Fractofusus and Charniodiscus, identifying them as a form-taxonomic grouping of degradationally homogenized taphomorphs. The absence of increased fossil abundance in proximity to these taphomorphs argues against scavenging or saprophytic behaviors dominating the E-surface community.