Reconstruction of east–west deep water exchange in the low latitude Atlantic Ocean over the past 25,000 years

Radiogenic neodymium isotopes have been used as a water mass mixing proxy to investigate past changes in ocean circulation. Here we present a new depth transect of deglacial neodymium isotope records measured on uncleaned planktic foraminifera from five cores spanning from 3300 to 4900 m on the Maur...

Full description

Bibliographic Details
Published in:Earth and Planetary Science Letters
Main Authors: Howe, Jacob N. W., Piotrowski, Alexander M., Hu, Rong, Bory, Aloys
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2017
Subjects:
Online Access:http://eprints.esc.cam.ac.uk/3927/
http://eprints.esc.cam.ac.uk/3927/3/1-s2.0-S0012821X16306136-main.pdf
http://eprints.esc.cam.ac.uk/3927/1/mmc2.xlsx
http://eprints.esc.cam.ac.uk/3927/2/mmc1.docx
https://doi.org/10.1016/j.epsl.2016.10.048
id ftucambridgeesc:oai:eprints.esc.cam.ac.uk:3927
record_format openpolar
spelling ftucambridgeesc:oai:eprints.esc.cam.ac.uk:3927 2023-05-15T17:25:28+02:00 Reconstruction of east–west deep water exchange in the low latitude Atlantic Ocean over the past 25,000 years Howe, Jacob N. W. Piotrowski, Alexander M. Hu, Rong Bory, Aloys 2017 text http://eprints.esc.cam.ac.uk/3927/ http://eprints.esc.cam.ac.uk/3927/3/1-s2.0-S0012821X16306136-main.pdf http://eprints.esc.cam.ac.uk/3927/1/mmc2.xlsx http://eprints.esc.cam.ac.uk/3927/2/mmc1.docx https://doi.org/10.1016/j.epsl.2016.10.048 en eng Elsevier http://eprints.esc.cam.ac.uk/3927/3/1-s2.0-S0012821X16306136-main.pdf http://eprints.esc.cam.ac.uk/3927/1/mmc2.xlsx http://eprints.esc.cam.ac.uk/3927/2/mmc1.docx Howe, Jacob N. W. and Piotrowski, Alexander M. and Hu, Rong and Bory, Aloys (2017) Reconstruction of east–west deep water exchange in the low latitude Atlantic Ocean over the past 25,000 years. Earth and Planetary Science Letters, 458. pp. 327-336. ISSN 0012-821X DOI https://doi.org/10.1016/j.epsl.2016.10.048 <https://doi.org/10.1016/j.epsl.2016.10.048> 01 - Climate Change and Earth-Ocean Atmosphere Systems Article PeerReviewed 2017 ftucambridgeesc https://doi.org/10.1016/j.epsl.2016.10.048 2020-08-27T18:09:49Z Radiogenic neodymium isotopes have been used as a water mass mixing proxy to investigate past changes in ocean circulation. Here we present a new depth transect of deglacial neodymium isotope records measured on uncleaned planktic foraminifera from five cores spanning from 3300 to 4900 m on the Mauritanian margin, in the tropical eastern Atlantic as well as an additional record from 4000 m on the Ceara Rise in the equatorial western Atlantic. Despite being located under the Saharan dust plume, the eastern Atlantic records differ from the composition of detrital inputs through time and exhibit similar values to the western Atlantic foraminiferal Nd across the deglaciation. Therefore we interpret the foraminiferal values as recording deep water Nd isotope changes. All six cores shift to less radiogenic values across the deglaciation, indicating that they were bathed by a lower proportion of North Atlantic Deep Water during the Last Glacial Maximum (LGM) relative to the Holocene. The eastern Atlantic records also show that a neodymium isotope gradient was present during the LGM and during the deglaciation, with more radiogenic values observed at the deepest sites. A homogeneous water mass observed below 3750 m in the deepest eastern Atlantic during the LGM is attributed to the mixing of deep water by rough topography as it passes from the western Atlantic through the fracture zones in the Mid-Atlantic Ridge. This implies that during the LGM the low latitude deep eastern Atlantic was ventilated from the western Atlantic via advection through fracture zones in the same manner as occurs in the modern ocean. Comparison with carbon isotopes indicates there was more respired carbon in the deep eastern than deep western Atlantic during the LGM, as is also seen in the modern Atlantic Ocean. Article in Journal/Newspaper North Atlantic Deep Water North Atlantic University of Cambridge, Department of Earth Sciences: ESC Publications Mid-Atlantic Ridge Earth and Planetary Science Letters 458 327 336
institution Open Polar
collection University of Cambridge, Department of Earth Sciences: ESC Publications
op_collection_id ftucambridgeesc
language English
topic 01 - Climate Change and Earth-Ocean Atmosphere Systems
spellingShingle 01 - Climate Change and Earth-Ocean Atmosphere Systems
Howe, Jacob N. W.
Piotrowski, Alexander M.
Hu, Rong
Bory, Aloys
Reconstruction of east–west deep water exchange in the low latitude Atlantic Ocean over the past 25,000 years
topic_facet 01 - Climate Change and Earth-Ocean Atmosphere Systems
description Radiogenic neodymium isotopes have been used as a water mass mixing proxy to investigate past changes in ocean circulation. Here we present a new depth transect of deglacial neodymium isotope records measured on uncleaned planktic foraminifera from five cores spanning from 3300 to 4900 m on the Mauritanian margin, in the tropical eastern Atlantic as well as an additional record from 4000 m on the Ceara Rise in the equatorial western Atlantic. Despite being located under the Saharan dust plume, the eastern Atlantic records differ from the composition of detrital inputs through time and exhibit similar values to the western Atlantic foraminiferal Nd across the deglaciation. Therefore we interpret the foraminiferal values as recording deep water Nd isotope changes. All six cores shift to less radiogenic values across the deglaciation, indicating that they were bathed by a lower proportion of North Atlantic Deep Water during the Last Glacial Maximum (LGM) relative to the Holocene. The eastern Atlantic records also show that a neodymium isotope gradient was present during the LGM and during the deglaciation, with more radiogenic values observed at the deepest sites. A homogeneous water mass observed below 3750 m in the deepest eastern Atlantic during the LGM is attributed to the mixing of deep water by rough topography as it passes from the western Atlantic through the fracture zones in the Mid-Atlantic Ridge. This implies that during the LGM the low latitude deep eastern Atlantic was ventilated from the western Atlantic via advection through fracture zones in the same manner as occurs in the modern ocean. Comparison with carbon isotopes indicates there was more respired carbon in the deep eastern than deep western Atlantic during the LGM, as is also seen in the modern Atlantic Ocean.
format Article in Journal/Newspaper
author Howe, Jacob N. W.
Piotrowski, Alexander M.
Hu, Rong
Bory, Aloys
author_facet Howe, Jacob N. W.
Piotrowski, Alexander M.
Hu, Rong
Bory, Aloys
author_sort Howe, Jacob N. W.
title Reconstruction of east–west deep water exchange in the low latitude Atlantic Ocean over the past 25,000 years
title_short Reconstruction of east–west deep water exchange in the low latitude Atlantic Ocean over the past 25,000 years
title_full Reconstruction of east–west deep water exchange in the low latitude Atlantic Ocean over the past 25,000 years
title_fullStr Reconstruction of east–west deep water exchange in the low latitude Atlantic Ocean over the past 25,000 years
title_full_unstemmed Reconstruction of east–west deep water exchange in the low latitude Atlantic Ocean over the past 25,000 years
title_sort reconstruction of east–west deep water exchange in the low latitude atlantic ocean over the past 25,000 years
publisher Elsevier
publishDate 2017
url http://eprints.esc.cam.ac.uk/3927/
http://eprints.esc.cam.ac.uk/3927/3/1-s2.0-S0012821X16306136-main.pdf
http://eprints.esc.cam.ac.uk/3927/1/mmc2.xlsx
http://eprints.esc.cam.ac.uk/3927/2/mmc1.docx
https://doi.org/10.1016/j.epsl.2016.10.048
geographic Mid-Atlantic Ridge
geographic_facet Mid-Atlantic Ridge
genre North Atlantic Deep Water
North Atlantic
genre_facet North Atlantic Deep Water
North Atlantic
op_relation http://eprints.esc.cam.ac.uk/3927/3/1-s2.0-S0012821X16306136-main.pdf
http://eprints.esc.cam.ac.uk/3927/1/mmc2.xlsx
http://eprints.esc.cam.ac.uk/3927/2/mmc1.docx
Howe, Jacob N. W. and Piotrowski, Alexander M. and Hu, Rong and Bory, Aloys (2017) Reconstruction of east–west deep water exchange in the low latitude Atlantic Ocean over the past 25,000 years. Earth and Planetary Science Letters, 458. pp. 327-336. ISSN 0012-821X DOI https://doi.org/10.1016/j.epsl.2016.10.048 <https://doi.org/10.1016/j.epsl.2016.10.048>
op_doi https://doi.org/10.1016/j.epsl.2016.10.048
container_title Earth and Planetary Science Letters
container_volume 458
container_start_page 327
op_container_end_page 336
_version_ 1766116912252583936