The Growth Response of Two Diatom Species to Atmospheric Dust from the Last Glacial Maximum

Relief of iron (Fe) limitation in the surface Southern Ocean has been suggested as one driver of the regular glacial-interglacial cycles in atmospheric carbon dioxide (CO2). The proposed cause is enhanced deposition of Fe-bearing atmospheric dust to the oceans during glacial intervals, with conseque...

Full description

Bibliographic Details
Published in:PLOS ONE
Main Authors: Conway, Tim M., Hoffmann, Linn J., Breitbarth, Eike, Strzepek, Robert F., Wolff, Eric W.
Format: Article in Journal/Newspaper
Language:English
Published: The Public Library of Science 2016
Subjects:
Online Access:http://eprints.esc.cam.ac.uk/3787/
http://eprints.esc.cam.ac.uk/3787/1/journal.pone.0158553.PDF
http://eprints.esc.cam.ac.uk/3787/2/S1_Data.XLSX
http://eprints.esc.cam.ac.uk/3787/3/S1_Fig.TIF
http://eprints.esc.cam.ac.uk/3787/4/S1_Text.DOCX
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0158553
https://doi.org/10.1371/journal.pone.0158553
id ftucambridgeesc:oai:eprints.esc.cam.ac.uk:3787
record_format openpolar
spelling ftucambridgeesc:oai:eprints.esc.cam.ac.uk:3787 2023-05-15T13:55:44+02:00 The Growth Response of Two Diatom Species to Atmospheric Dust from the Last Glacial Maximum Conway, Tim M. Hoffmann, Linn J. Breitbarth, Eike Strzepek, Robert F. Wolff, Eric W. 2016-07 text image http://eprints.esc.cam.ac.uk/3787/ http://eprints.esc.cam.ac.uk/3787/1/journal.pone.0158553.PDF http://eprints.esc.cam.ac.uk/3787/2/S1_Data.XLSX http://eprints.esc.cam.ac.uk/3787/3/S1_Fig.TIF http://eprints.esc.cam.ac.uk/3787/4/S1_Text.DOCX http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0158553 https://doi.org/10.1371/journal.pone.0158553 en eng The Public Library of Science http://eprints.esc.cam.ac.uk/3787/1/journal.pone.0158553.PDF http://eprints.esc.cam.ac.uk/3787/2/S1_Data.XLSX http://eprints.esc.cam.ac.uk/3787/3/S1_Fig.TIF http://eprints.esc.cam.ac.uk/3787/4/S1_Text.DOCX Conway, Tim M. and Hoffmann, Linn J. and Breitbarth, Eike and Strzepek, Robert F. and Wolff, Eric W. (2016) The Growth Response of Two Diatom Species to Atmospheric Dust from the Last Glacial Maximum. PLoS ONE, 11 (7). e0158553. ISSN ISSN1932-6203 DOI https://doi.org/10.1371/journal.pone.0158553 <https://doi.org/10.1371/journal.pone.0158553> 01 - Climate Change and Earth-Ocean Atmosphere Systems Article PeerReviewed 2016 ftucambridgeesc https://doi.org/10.1371/journal.pone.0158553 2020-08-27T18:09:47Z Relief of iron (Fe) limitation in the surface Southern Ocean has been suggested as one driver of the regular glacial-interglacial cycles in atmospheric carbon dioxide (CO2). The proposed cause is enhanced deposition of Fe-bearing atmospheric dust to the oceans during glacial intervals, with consequent effects on export production and the carbon cycle. However, understanding the role of enhanced atmospheric Fe supply in biogeochemical cycles is limited by knowledge of the fluxes and ‘bioavailability’ of atmospheric Fe during glacial intervals. Here, we assess the effect of Fe fertilization by dust, dry-extracted from the Last Glacial Maximum portion of the EPICA Dome C Antarctic ice core, on the Antarctic diatom species Eucampia antarctica and Proboscia inermis. Both species showed strong but differing reactions to dust addition. E. antarctica increased cell number (3880 vs. 786 cells mL-1), chlorophyll a (51 vs. 3.9 μg mL-1) and particulate organic carbon (POC; 1.68 vs. 0.28 μg mL-1) production in response to dust compared to controls. P. inermis did not increase cell number in response to dust, but chlorophyll a and POC per cell both strongly increased compared to controls (39 vs. 15 and 2.13 vs. 0.95 ng cell-1 respectively). The net result of both responses was a greater production of POC and chlorophyll a, as well as decreased Si:C and Si:N incorporation ratios within cells. However, E, antarctica decreased silicate uptake for the same nitrate and carbon uptake, while P. inermis increased carbon and nitrate uptake for the same silicate uptake. This suggests that nutrient utilization changes in response to Fe addition could be driven by different underlying mechanisms between different diatom species. Enhanced supply of atmospheric dust to the surface ocean during glacial intervals could therefore have driven nutrient-utilization changes which could permit greater carbon fixation for lower silica utilization. Additionally, both species responded more strongly to lower amounts of direct Fe chloride addition than they did to dust, suggesting that not all the Fe released from dust was in a bioavailable form available for uptake by diatoms. Article in Journal/Newspaper Antarc* Antarctic Antarctica E. Antarctica EPICA ice core Southern Ocean University of Cambridge, Department of Earth Sciences: ESC Publications Antarctic Southern Ocean The Antarctic PLOS ONE 11 7 e0158553
institution Open Polar
collection University of Cambridge, Department of Earth Sciences: ESC Publications
op_collection_id ftucambridgeesc
language English
topic 01 - Climate Change and Earth-Ocean Atmosphere Systems
spellingShingle 01 - Climate Change and Earth-Ocean Atmosphere Systems
Conway, Tim M.
Hoffmann, Linn J.
Breitbarth, Eike
Strzepek, Robert F.
Wolff, Eric W.
The Growth Response of Two Diatom Species to Atmospheric Dust from the Last Glacial Maximum
topic_facet 01 - Climate Change and Earth-Ocean Atmosphere Systems
description Relief of iron (Fe) limitation in the surface Southern Ocean has been suggested as one driver of the regular glacial-interglacial cycles in atmospheric carbon dioxide (CO2). The proposed cause is enhanced deposition of Fe-bearing atmospheric dust to the oceans during glacial intervals, with consequent effects on export production and the carbon cycle. However, understanding the role of enhanced atmospheric Fe supply in biogeochemical cycles is limited by knowledge of the fluxes and ‘bioavailability’ of atmospheric Fe during glacial intervals. Here, we assess the effect of Fe fertilization by dust, dry-extracted from the Last Glacial Maximum portion of the EPICA Dome C Antarctic ice core, on the Antarctic diatom species Eucampia antarctica and Proboscia inermis. Both species showed strong but differing reactions to dust addition. E. antarctica increased cell number (3880 vs. 786 cells mL-1), chlorophyll a (51 vs. 3.9 μg mL-1) and particulate organic carbon (POC; 1.68 vs. 0.28 μg mL-1) production in response to dust compared to controls. P. inermis did not increase cell number in response to dust, but chlorophyll a and POC per cell both strongly increased compared to controls (39 vs. 15 and 2.13 vs. 0.95 ng cell-1 respectively). The net result of both responses was a greater production of POC and chlorophyll a, as well as decreased Si:C and Si:N incorporation ratios within cells. However, E, antarctica decreased silicate uptake for the same nitrate and carbon uptake, while P. inermis increased carbon and nitrate uptake for the same silicate uptake. This suggests that nutrient utilization changes in response to Fe addition could be driven by different underlying mechanisms between different diatom species. Enhanced supply of atmospheric dust to the surface ocean during glacial intervals could therefore have driven nutrient-utilization changes which could permit greater carbon fixation for lower silica utilization. Additionally, both species responded more strongly to lower amounts of direct Fe chloride addition than they did to dust, suggesting that not all the Fe released from dust was in a bioavailable form available for uptake by diatoms.
format Article in Journal/Newspaper
author Conway, Tim M.
Hoffmann, Linn J.
Breitbarth, Eike
Strzepek, Robert F.
Wolff, Eric W.
author_facet Conway, Tim M.
Hoffmann, Linn J.
Breitbarth, Eike
Strzepek, Robert F.
Wolff, Eric W.
author_sort Conway, Tim M.
title The Growth Response of Two Diatom Species to Atmospheric Dust from the Last Glacial Maximum
title_short The Growth Response of Two Diatom Species to Atmospheric Dust from the Last Glacial Maximum
title_full The Growth Response of Two Diatom Species to Atmospheric Dust from the Last Glacial Maximum
title_fullStr The Growth Response of Two Diatom Species to Atmospheric Dust from the Last Glacial Maximum
title_full_unstemmed The Growth Response of Two Diatom Species to Atmospheric Dust from the Last Glacial Maximum
title_sort growth response of two diatom species to atmospheric dust from the last glacial maximum
publisher The Public Library of Science
publishDate 2016
url http://eprints.esc.cam.ac.uk/3787/
http://eprints.esc.cam.ac.uk/3787/1/journal.pone.0158553.PDF
http://eprints.esc.cam.ac.uk/3787/2/S1_Data.XLSX
http://eprints.esc.cam.ac.uk/3787/3/S1_Fig.TIF
http://eprints.esc.cam.ac.uk/3787/4/S1_Text.DOCX
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0158553
https://doi.org/10.1371/journal.pone.0158553
geographic Antarctic
Southern Ocean
The Antarctic
geographic_facet Antarctic
Southern Ocean
The Antarctic
genre Antarc*
Antarctic
Antarctica
E. Antarctica
EPICA
ice core
Southern Ocean
genre_facet Antarc*
Antarctic
Antarctica
E. Antarctica
EPICA
ice core
Southern Ocean
op_relation http://eprints.esc.cam.ac.uk/3787/1/journal.pone.0158553.PDF
http://eprints.esc.cam.ac.uk/3787/2/S1_Data.XLSX
http://eprints.esc.cam.ac.uk/3787/3/S1_Fig.TIF
http://eprints.esc.cam.ac.uk/3787/4/S1_Text.DOCX
Conway, Tim M. and Hoffmann, Linn J. and Breitbarth, Eike and Strzepek, Robert F. and Wolff, Eric W. (2016) The Growth Response of Two Diatom Species to Atmospheric Dust from the Last Glacial Maximum. PLoS ONE, 11 (7). e0158553. ISSN ISSN1932-6203 DOI https://doi.org/10.1371/journal.pone.0158553 <https://doi.org/10.1371/journal.pone.0158553>
op_doi https://doi.org/10.1371/journal.pone.0158553
container_title PLOS ONE
container_volume 11
container_issue 7
container_start_page e0158553
_version_ 1766262574406434816