Calibration and validation of the CryoSat radar altimeter - Devon Ice Cap, Spring/Fall 2004

Field experiments towards calibration/validation of the CryoSat radar altimeter were performed on the Devon ice cap in the Canadian Arctic during the spring (April - May) and fall (August-September) of 2004. Field measurements were synchronized with overflights of an airborne radar altimeter (ASIRAS...

Full description

Bibliographic Details
Main Authors: Burgess, D, Sharp, M, Cawkwell, FGL, Williamson, S, Demuth, M, Sekerka, J, Bell, C, Mair, D, Bingham, RG
Format: Other Non-Article Part of Journal/Newspaper
Language:English
Published: 2005
Subjects:
Online Access:http://hdl.handle.net/1983/8bd1bc29-8a63-48b2-ab96-f5ae0777a315
https://research-information.bris.ac.uk/en/publications/8bd1bc29-8a63-48b2-ab96-f5ae0777a315
id ftubristolcris:oai:research-information.bris.ac.uk:publications/8bd1bc29-8a63-48b2-ab96-f5ae0777a315
record_format openpolar
institution Open Polar
collection University of Bristol: Bristol Research
op_collection_id ftubristolcris
language English
description Field experiments towards calibration/validation of the CryoSat radar altimeter were performed on the Devon ice cap in the Canadian Arctic during the spring (April - May) and fall (August-September) of 2004. Field measurements were synchronized with overflights of an airborne radar altimeter (ASIRAS) operated by the Alfred Wegener Institute along a 50 km transect extending from the central divide to the south margin of the ice cap. Direct measurements of surface elevation, elevation change, surface roughness, and subsurface structure were performed at 4 main study sites that were established during the spring campaign in the percolation/dry snow (1800 m a.s.l.), wet snow (1400 m a.s.l.), superimposed ice (1000 m a.s.l.), and ablation (670m a.s.l.) zones. Surface elevations at each study site were measured using static differential global positioning (DGPS) techniques and along the entire transect using kinematic DGPS. Rates of ice thickness change were measured using the 'coffee can' technique at all study sites and from horizontal strain data combined with long term (41 year) mass balance estimates at study sites 2 and 3. Surface roughness was quantified along the entire transect at the centimeter, decimeter, and meter scales using digital photography, optical leveling, and kinematic DGPS techniques respectively. Subsurface properties (to depths of ~2 m) and seasonal mass balance were also measured along the entire transect from snow pits and shallow ice cores during the spring and fall campaigns. During the fall campaign only, the continuity of the main subsurface layers was tracked between snow pit and ice core locations using 1 GHz ground penetrating radar (GPR) surveys. Meteorological conditions were recorded at 3 automatic weather stations and 15 HOBOTM temperature loggers installed during the spring campaign. Field measurement techniques and preliminary results are presented. Field experiments towards calibration/validation of the CryoSat radar altimeter were performed on the Devon ice cap in the Canadian Arctic during the spring (April - May) and fall (August-September) of 2004. Field measurements were synchronized with overflights of an airborne radar altimeter (ASIRAS) operated by the Alfred Wegener Institute along a 50 km transect extending from the central divide to the south margin of the ice cap. Direct measurements of surface elevation, elevation change, surface roughness, and subsurface structure were performed at 4 main study sites that were established during the spring campaign in the percolation/dry snow (1800 m a.s.l.), wet snow (1400 m a.s.l.), superimposed ice (1000 m a.s.l.), and ablation (670m a.s.l.) zones. Surface elevations at each study site were measured using static differential global positioning (DGPS) techniques and along the entire transect using kinematic DGPS. Rates of ice thickness change were measured using the 'coffee can' technique at all study sites and from horizontal strain data combined with long term (41 year) mass balance estimates at study sites 2 and 3. Surface roughness was quantified along the entire transect at the centimeter, decimeter, and meter scales using digital photography, optical leveling, and kinematic DGPS techniques respectively. Subsurface properties (to depths of ~2 m) and seasonal mass balance were also measured along the entire transect from snow pits and shallow ice cores during the spring and fall campaigns. During the fall campaign only, the continuity of the main subsurface layers was tracked between snow pit and ice core locations using 1 GHz ground penetrating radar (GPR) surveys. Meteorological conditions were recorded at 3 automatic weather stations and 15 HOBOTM temperature loggers installed during the spring campaign. Field measurement techniques and preliminary results are presented.
format Other Non-Article Part of Journal/Newspaper
author Burgess, D
Sharp, M
Cawkwell, FGL
Williamson, S
Demuth, M
Sekerka, J
Bell, C
Mair, D
Bingham, RG
spellingShingle Burgess, D
Sharp, M
Cawkwell, FGL
Williamson, S
Demuth, M
Sekerka, J
Bell, C
Mair, D
Bingham, RG
Calibration and validation of the CryoSat radar altimeter - Devon Ice Cap, Spring/Fall 2004
author_facet Burgess, D
Sharp, M
Cawkwell, FGL
Williamson, S
Demuth, M
Sekerka, J
Bell, C
Mair, D
Bingham, RG
author_sort Burgess, D
title Calibration and validation of the CryoSat radar altimeter - Devon Ice Cap, Spring/Fall 2004
title_short Calibration and validation of the CryoSat radar altimeter - Devon Ice Cap, Spring/Fall 2004
title_full Calibration and validation of the CryoSat radar altimeter - Devon Ice Cap, Spring/Fall 2004
title_fullStr Calibration and validation of the CryoSat radar altimeter - Devon Ice Cap, Spring/Fall 2004
title_full_unstemmed Calibration and validation of the CryoSat radar altimeter - Devon Ice Cap, Spring/Fall 2004
title_sort calibration and validation of the cryosat radar altimeter - devon ice cap, spring/fall 2004
publishDate 2005
url http://hdl.handle.net/1983/8bd1bc29-8a63-48b2-ab96-f5ae0777a315
https://research-information.bris.ac.uk/en/publications/8bd1bc29-8a63-48b2-ab96-f5ae0777a315
long_lat ENVELOPE(-61.067,-61.067,-64.300,-64.300)
ENVELOPE(-82.499,-82.499,75.335,75.335)
geographic Arctic
Cap Spring
Devon Ice Cap
geographic_facet Arctic
Cap Spring
Devon Ice Cap
genre Arctic
Ice cap
ice core
genre_facet Arctic
Ice cap
ice core
op_source Burgess , D , Sharp , M , Cawkwell , FGL , Williamson , S , Demuth , M , Sekerka , J , Bell , C , Mair , D & Bingham , RG 2005 , Calibration and validation of the CryoSat radar altimeter - Devon Ice Cap, Spring/Fall 2004 . in CryoSat 2005 Workshop, European Space Agency, Frascati, Rome .
op_rights info:eu-repo/semantics/restrictedAccess
_version_ 1766341406953046016
spelling ftubristolcris:oai:research-information.bris.ac.uk:publications/8bd1bc29-8a63-48b2-ab96-f5ae0777a315 2023-05-15T15:10:22+02:00 Calibration and validation of the CryoSat radar altimeter - Devon Ice Cap, Spring/Fall 2004 Burgess, D Sharp, M Cawkwell, FGL Williamson, S Demuth, M Sekerka, J Bell, C Mair, D Bingham, RG 2005 http://hdl.handle.net/1983/8bd1bc29-8a63-48b2-ab96-f5ae0777a315 https://research-information.bris.ac.uk/en/publications/8bd1bc29-8a63-48b2-ab96-f5ae0777a315 eng eng info:eu-repo/semantics/restrictedAccess Burgess , D , Sharp , M , Cawkwell , FGL , Williamson , S , Demuth , M , Sekerka , J , Bell , C , Mair , D & Bingham , RG 2005 , Calibration and validation of the CryoSat radar altimeter - Devon Ice Cap, Spring/Fall 2004 . in CryoSat 2005 Workshop, European Space Agency, Frascati, Rome . contributionToPeriodical 2005 ftubristolcris 2021-08-02T09:53:14Z Field experiments towards calibration/validation of the CryoSat radar altimeter were performed on the Devon ice cap in the Canadian Arctic during the spring (April - May) and fall (August-September) of 2004. Field measurements were synchronized with overflights of an airborne radar altimeter (ASIRAS) operated by the Alfred Wegener Institute along a 50 km transect extending from the central divide to the south margin of the ice cap. Direct measurements of surface elevation, elevation change, surface roughness, and subsurface structure were performed at 4 main study sites that were established during the spring campaign in the percolation/dry snow (1800 m a.s.l.), wet snow (1400 m a.s.l.), superimposed ice (1000 m a.s.l.), and ablation (670m a.s.l.) zones. Surface elevations at each study site were measured using static differential global positioning (DGPS) techniques and along the entire transect using kinematic DGPS. Rates of ice thickness change were measured using the 'coffee can' technique at all study sites and from horizontal strain data combined with long term (41 year) mass balance estimates at study sites 2 and 3. Surface roughness was quantified along the entire transect at the centimeter, decimeter, and meter scales using digital photography, optical leveling, and kinematic DGPS techniques respectively. Subsurface properties (to depths of ~2 m) and seasonal mass balance were also measured along the entire transect from snow pits and shallow ice cores during the spring and fall campaigns. During the fall campaign only, the continuity of the main subsurface layers was tracked between snow pit and ice core locations using 1 GHz ground penetrating radar (GPR) surveys. Meteorological conditions were recorded at 3 automatic weather stations and 15 HOBOTM temperature loggers installed during the spring campaign. Field measurement techniques and preliminary results are presented. Field experiments towards calibration/validation of the CryoSat radar altimeter were performed on the Devon ice cap in the Canadian Arctic during the spring (April - May) and fall (August-September) of 2004. Field measurements were synchronized with overflights of an airborne radar altimeter (ASIRAS) operated by the Alfred Wegener Institute along a 50 km transect extending from the central divide to the south margin of the ice cap. Direct measurements of surface elevation, elevation change, surface roughness, and subsurface structure were performed at 4 main study sites that were established during the spring campaign in the percolation/dry snow (1800 m a.s.l.), wet snow (1400 m a.s.l.), superimposed ice (1000 m a.s.l.), and ablation (670m a.s.l.) zones. Surface elevations at each study site were measured using static differential global positioning (DGPS) techniques and along the entire transect using kinematic DGPS. Rates of ice thickness change were measured using the 'coffee can' technique at all study sites and from horizontal strain data combined with long term (41 year) mass balance estimates at study sites 2 and 3. Surface roughness was quantified along the entire transect at the centimeter, decimeter, and meter scales using digital photography, optical leveling, and kinematic DGPS techniques respectively. Subsurface properties (to depths of ~2 m) and seasonal mass balance were also measured along the entire transect from snow pits and shallow ice cores during the spring and fall campaigns. During the fall campaign only, the continuity of the main subsurface layers was tracked between snow pit and ice core locations using 1 GHz ground penetrating radar (GPR) surveys. Meteorological conditions were recorded at 3 automatic weather stations and 15 HOBOTM temperature loggers installed during the spring campaign. Field measurement techniques and preliminary results are presented. Other Non-Article Part of Journal/Newspaper Arctic Ice cap ice core University of Bristol: Bristol Research Arctic Cap Spring ENVELOPE(-61.067,-61.067,-64.300,-64.300) Devon Ice Cap ENVELOPE(-82.499,-82.499,75.335,75.335)