Carbonaceous material export from Siberian permafrost tracked across the Arctic Shelf using Raman spectroscopy
Warming-induced erosion of permafrost from Eastern Siberia mobilises large amounts of organic carbon and delivers it to the East Siberian Arctic Shelf (ESAS). In this study Raman spectroscopy of carbonaceous material (CM) was used to characterise, identify and track the most recalcitrant fraction of...
Published in: | The Cryosphere |
---|---|
Main Authors: | , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | https://hdl.handle.net/1983/5da4f0df-4d79-4aa3-9d5e-3d013ed9c52d https://research-information.bris.ac.uk/en/publications/5da4f0df-4d79-4aa3-9d5e-3d013ed9c52d https://doi.org/10.5194/tc-12-3293-2018 http://www.scopus.com/inward/record.url?scp=85054978868&partnerID=8YFLogxK |
id |
ftubristolcris:oai:research-information.bris.ac.uk:publications/5da4f0df-4d79-4aa3-9d5e-3d013ed9c52d |
---|---|
record_format |
openpolar |
spelling |
ftubristolcris:oai:research-information.bris.ac.uk:publications/5da4f0df-4d79-4aa3-9d5e-3d013ed9c52d 2024-02-11T09:59:27+01:00 Carbonaceous material export from Siberian permafrost tracked across the Arctic Shelf using Raman spectroscopy Sparkes, Robert B. Maher, Melissa Blewett, Jerome Selver, Ayça Ogrul Gustafsson, Orjan Semiletov, Igor P. Van Dongen, Bart E. 2018-10-11 https://hdl.handle.net/1983/5da4f0df-4d79-4aa3-9d5e-3d013ed9c52d https://research-information.bris.ac.uk/en/publications/5da4f0df-4d79-4aa3-9d5e-3d013ed9c52d https://doi.org/10.5194/tc-12-3293-2018 http://www.scopus.com/inward/record.url?scp=85054978868&partnerID=8YFLogxK eng eng info:eu-repo/semantics/openAccess Sparkes , R B , Maher , M , Blewett , J , Selver , A O , Gustafsson , O , Semiletov , I P & Van Dongen , B E 2018 , ' Carbonaceous material export from Siberian permafrost tracked across the Arctic Shelf using Raman spectroscopy ' , Cryosphere , vol. 12 , no. 10 , pp. 3293-3309 . https://doi.org/10.5194/tc-12-3293-2018 article 2018 ftubristolcris https://doi.org/10.5194/tc-12-3293-2018 2024-01-18T23:31:53Z Warming-induced erosion of permafrost from Eastern Siberia mobilises large amounts of organic carbon and delivers it to the East Siberian Arctic Shelf (ESAS). In this study Raman spectroscopy of carbonaceous material (CM) was used to characterise, identify and track the most recalcitrant fraction of the organic load: 1463 spectra were obtained from surface sediments collected across the ESAS and automatically analysed for their Raman peaks. Spectra were classified by their peak areas and widths into disordered, intermediate, mildly graphitised and highly graphitised groups and the distribution of these classes was investigated across the shelf. Disordered CM was most prevalent in a permafrost core from Kurungnakh Island and from areas known to have high rates of coastal erosion. Sediments from outflows of the Indigirka and Kolyma rivers were generally enriched in intermediate CM. These different sediment sources were identified and distinguished along an E-W transect using their Raman spectra, showing that sediment is not homogenised on the ESAS. Distal samples, from the ESAS slope, contained greater amounts of highly graphitised CM compared to the rest of the shelf, attributable to degradation or, more likely, winnowing processes offshore. The presence of all four spectral classes in distal sediments demonstrates that CM degrades much more slowly than lipid biomarkers and other traditional tracers of terrestrial organic matter and shows that alongside degradation of the more labile organic matter component there is also conservative transport of carbon across the shelf toward the deep ocean. Thus, carbon cycle calculations must consider the nature as well as the amount of carbon liberated from thawing permafrost and other erosional settings. Article in Journal/Newspaper Arctic Arctic permafrost Siberia University of Bristol: Bristol Research Arctic Indigirka ENVELOPE(149.609,149.609,70.929,70.929) Kolyma ENVELOPE(161.000,161.000,69.500,69.500) The Cryosphere 12 10 3293 3309 |
institution |
Open Polar |
collection |
University of Bristol: Bristol Research |
op_collection_id |
ftubristolcris |
language |
English |
description |
Warming-induced erosion of permafrost from Eastern Siberia mobilises large amounts of organic carbon and delivers it to the East Siberian Arctic Shelf (ESAS). In this study Raman spectroscopy of carbonaceous material (CM) was used to characterise, identify and track the most recalcitrant fraction of the organic load: 1463 spectra were obtained from surface sediments collected across the ESAS and automatically analysed for their Raman peaks. Spectra were classified by their peak areas and widths into disordered, intermediate, mildly graphitised and highly graphitised groups and the distribution of these classes was investigated across the shelf. Disordered CM was most prevalent in a permafrost core from Kurungnakh Island and from areas known to have high rates of coastal erosion. Sediments from outflows of the Indigirka and Kolyma rivers were generally enriched in intermediate CM. These different sediment sources were identified and distinguished along an E-W transect using their Raman spectra, showing that sediment is not homogenised on the ESAS. Distal samples, from the ESAS slope, contained greater amounts of highly graphitised CM compared to the rest of the shelf, attributable to degradation or, more likely, winnowing processes offshore. The presence of all four spectral classes in distal sediments demonstrates that CM degrades much more slowly than lipid biomarkers and other traditional tracers of terrestrial organic matter and shows that alongside degradation of the more labile organic matter component there is also conservative transport of carbon across the shelf toward the deep ocean. Thus, carbon cycle calculations must consider the nature as well as the amount of carbon liberated from thawing permafrost and other erosional settings. |
format |
Article in Journal/Newspaper |
author |
Sparkes, Robert B. Maher, Melissa Blewett, Jerome Selver, Ayça Ogrul Gustafsson, Orjan Semiletov, Igor P. Van Dongen, Bart E. |
spellingShingle |
Sparkes, Robert B. Maher, Melissa Blewett, Jerome Selver, Ayça Ogrul Gustafsson, Orjan Semiletov, Igor P. Van Dongen, Bart E. Carbonaceous material export from Siberian permafrost tracked across the Arctic Shelf using Raman spectroscopy |
author_facet |
Sparkes, Robert B. Maher, Melissa Blewett, Jerome Selver, Ayça Ogrul Gustafsson, Orjan Semiletov, Igor P. Van Dongen, Bart E. |
author_sort |
Sparkes, Robert B. |
title |
Carbonaceous material export from Siberian permafrost tracked across the Arctic Shelf using Raman spectroscopy |
title_short |
Carbonaceous material export from Siberian permafrost tracked across the Arctic Shelf using Raman spectroscopy |
title_full |
Carbonaceous material export from Siberian permafrost tracked across the Arctic Shelf using Raman spectroscopy |
title_fullStr |
Carbonaceous material export from Siberian permafrost tracked across the Arctic Shelf using Raman spectroscopy |
title_full_unstemmed |
Carbonaceous material export from Siberian permafrost tracked across the Arctic Shelf using Raman spectroscopy |
title_sort |
carbonaceous material export from siberian permafrost tracked across the arctic shelf using raman spectroscopy |
publishDate |
2018 |
url |
https://hdl.handle.net/1983/5da4f0df-4d79-4aa3-9d5e-3d013ed9c52d https://research-information.bris.ac.uk/en/publications/5da4f0df-4d79-4aa3-9d5e-3d013ed9c52d https://doi.org/10.5194/tc-12-3293-2018 http://www.scopus.com/inward/record.url?scp=85054978868&partnerID=8YFLogxK |
long_lat |
ENVELOPE(149.609,149.609,70.929,70.929) ENVELOPE(161.000,161.000,69.500,69.500) |
geographic |
Arctic Indigirka Kolyma |
geographic_facet |
Arctic Indigirka Kolyma |
genre |
Arctic Arctic permafrost Siberia |
genre_facet |
Arctic Arctic permafrost Siberia |
op_source |
Sparkes , R B , Maher , M , Blewett , J , Selver , A O , Gustafsson , O , Semiletov , I P & Van Dongen , B E 2018 , ' Carbonaceous material export from Siberian permafrost tracked across the Arctic Shelf using Raman spectroscopy ' , Cryosphere , vol. 12 , no. 10 , pp. 3293-3309 . https://doi.org/10.5194/tc-12-3293-2018 |
op_rights |
info:eu-repo/semantics/openAccess |
op_doi |
https://doi.org/10.5194/tc-12-3293-2018 |
container_title |
The Cryosphere |
container_volume |
12 |
container_issue |
10 |
container_start_page |
3293 |
op_container_end_page |
3309 |
_version_ |
1790595346963890176 |