Global glacier volume projections under high-end climate change scenarios

The Paris agreement aims to hold global warming to well below 2 °C and to pursue efforts to limit it to 1.5 °C relative to the pre-industrial period. Recent estimates based on population growth and intended carbon emissions from participant countries suggest global warming may exceed this ambitious...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Shannon, Sarah, Smith, Robin, Wiltshire, Andy, Payne, Tony, Huss, Matthias, Betts, Richard, Caesar, John, Koutroulis, Aris, Jones, Darren, Harrison, Stephan
Format: Article in Journal/Newspaper
Language:English
Published: 2019
Subjects:
Online Access:https://hdl.handle.net/1983/47ce3330-6856-4053-8b0e-ed19aaf10393
https://research-information.bris.ac.uk/en/publications/47ce3330-6856-4053-8b0e-ed19aaf10393
https://doi.org/10.5194/tc-13-325-2019
https://research-information.bris.ac.uk/ws/files/188676904/tc_13_325_2019.pdf
https://research-information.bris.ac.uk/ws/files/188676906/tc_13_325_2019_supplement.pdf
http://www.scopus.com/inward/record.url?scp=85061122170&partnerID=8YFLogxK
Description
Summary:The Paris agreement aims to hold global warming to well below 2 °C and to pursue efforts to limit it to 1.5 °C relative to the pre-industrial period. Recent estimates based on population growth and intended carbon emissions from participant countries suggest global warming may exceed this ambitious target. Here we present glacier volume projections for the end of this century, under a range of high-end climate change scenarios, defined as exceeding +2° C global average warming relative to the pre-industrial period. Glacier volume is modelled by developing an elevation-dependent mass balance model for the Joint UK Land Environment Simulator (JULES). To do this, we modify JULES to include glaciated and unglaciated surfaces that can exist at multiple heights within a single grid box. Present-day mass balance is calibrated by tuning albedo, wind speed, precipitation, and temperature lapse rates to obtain the best agreement with observed mass balance profiles. JULES is forced with an ensemble of six Coupled Model Intercomparison Project Phase 5 (CMIP5) models, which were downscaled using the high-resolution HadGEM3-A atmosphere-only global climate model. The CMIP5 models use the RCP8.5 climate change scenario and were selected on the criteria of passing 2 °C global average warming during this century. The ensemble mean volume loss at the end of the century plus or minus 1 standard deviation is-64±5% for all glaciers excluding those on the peripheral of the Antarctic ice sheet. The uncertainty in the multi-model mean is rather small and caused by the sensitivity of HadGEM3-A to the boundary conditions supplied by the CMIP5 models. The regions which lose more than 75% of their initial volume by the end of the century are Alaska, western Canada and the US, Iceland, Scandinavia, the Russian Arctic, central Europe, Caucasus, high-mountain Asia, low latitudes, southern Andes, and New Zealand. The ensemble mean ice loss expressed in sea level equivalent contribution is 215.2±21.3 mm. The largest contributors to sea level ...