The impact of particle shape on fall velocity:Implications for volcanic ash dispersion modelling
Modelling atmospheric volcanic ash dispersion is a critical tool in mitigating the impact of large explosive eruptions; it is also useful for understanding and reconstructing past events. Most atmospheric dispersion models include a sedimentation velocity term that is sensitive to the physical prope...
Published in: | Journal of Volcanology and Geothermal Research |
---|---|
Main Authors: | , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | https://hdl.handle.net/1983/09f22f80-484e-4458-8861-c558d214d6e4 https://research-information.bris.ac.uk/en/publications/09f22f80-484e-4458-8861-c558d214d6e4 https://doi.org/10.1016/j.jvolgeores.2018.08.006 https://research-information.bris.ac.uk/ws/files/168157470/Full_text_PDF_final_published_version_.pdf http://www.scopus.com/inward/record.url?scp=85052919348&partnerID=8YFLogxK |
id |
ftubristolcris:oai:research-information.bris.ac.uk:publications/09f22f80-484e-4458-8861-c558d214d6e4 |
---|---|
record_format |
openpolar |
spelling |
ftubristolcris:oai:research-information.bris.ac.uk:publications/09f22f80-484e-4458-8861-c558d214d6e4 2024-04-28T08:26:15+00:00 The impact of particle shape on fall velocity:Implications for volcanic ash dispersion modelling Saxby, Jennifer Beckett, Frances Cashman, Katharine Rust, Alison Tennant, Eleanor 2018-08 application/pdf https://hdl.handle.net/1983/09f22f80-484e-4458-8861-c558d214d6e4 https://research-information.bris.ac.uk/en/publications/09f22f80-484e-4458-8861-c558d214d6e4 https://doi.org/10.1016/j.jvolgeores.2018.08.006 https://research-information.bris.ac.uk/ws/files/168157470/Full_text_PDF_final_published_version_.pdf http://www.scopus.com/inward/record.url?scp=85052919348&partnerID=8YFLogxK eng eng https://research-information.bris.ac.uk/en/publications/09f22f80-484e-4458-8861-c558d214d6e4 info:eu-repo/semantics/openAccess Saxby , J , Beckett , F , Cashman , K , Rust , A & Tennant , E 2018 , ' The impact of particle shape on fall velocity : Implications for volcanic ash dispersion modelling ' , Journal of Volcanology and Geothermal Research , vol. 362 , pp. 32-48 . https://doi.org/10.1016/j.jvolgeores.2018.08.006 article 2018 ftubristolcris https://doi.org/10.1016/j.jvolgeores.2018.08.006 2024-04-03T15:50:29Z Modelling atmospheric volcanic ash dispersion is a critical tool in mitigating the impact of large explosive eruptions; it is also useful for understanding and reconstructing past events. Most atmospheric dispersion models include a sedimentation velocity term that is sensitive to the physical properties of the particle, but many do not use particle shape as an input parameter; instead particles are assumed to be spherical. There are many empirical and semi-empirical shape-dependent drag laws. We measure the velocity of scaled analogue particles over the range of flow conditions anticipated for volcanic ash dispersion to test published formulae against an independent dataset. We use a semi-empirical formula we determined to be accurate for non-spheres to investigate the sensitivity of the modelled transport of an ash cloud to particle shape, using the atmospheric dispersion model NAME and a shape parameter we measure for non-spherical ash particles from Katla volcano, Iceland. We find that model particle trajectories are sensitive to particle shape for particles >1–3 μm diameter; the sedimentation velocity of smaller particles is low compared to atmospheric vertical velocities. Sensitivity to shape increases with size such that 100 μm particles can travel 44% further from the source when they are highly non-spherical (sphericity = 0.5). Despite the sensitivity of the fall velocity of large particles to their shape, however, forecasts of distal ash concentration using particle size distributions of 0.1–100 μm and 0.1–250 μm show relatively good agreement between a spherical and non-spherical case for the first 36 h after an eruption. The vertical structure of an ash cloud is more sensitive to particle shape than the horizontal extent. Model particle trajectories are also sensitive to particle size, and we find a discrepancy between different particle size parameters for non-spherical ash: particle long axis L, used in cryptotephra studies, was on average twice the equivalent-volume sphere diameter d v , used ... Article in Journal/Newspaper Iceland Katla University of Bristol: Bristol Research Journal of Volcanology and Geothermal Research 362 32 48 |
institution |
Open Polar |
collection |
University of Bristol: Bristol Research |
op_collection_id |
ftubristolcris |
language |
English |
description |
Modelling atmospheric volcanic ash dispersion is a critical tool in mitigating the impact of large explosive eruptions; it is also useful for understanding and reconstructing past events. Most atmospheric dispersion models include a sedimentation velocity term that is sensitive to the physical properties of the particle, but many do not use particle shape as an input parameter; instead particles are assumed to be spherical. There are many empirical and semi-empirical shape-dependent drag laws. We measure the velocity of scaled analogue particles over the range of flow conditions anticipated for volcanic ash dispersion to test published formulae against an independent dataset. We use a semi-empirical formula we determined to be accurate for non-spheres to investigate the sensitivity of the modelled transport of an ash cloud to particle shape, using the atmospheric dispersion model NAME and a shape parameter we measure for non-spherical ash particles from Katla volcano, Iceland. We find that model particle trajectories are sensitive to particle shape for particles >1–3 μm diameter; the sedimentation velocity of smaller particles is low compared to atmospheric vertical velocities. Sensitivity to shape increases with size such that 100 μm particles can travel 44% further from the source when they are highly non-spherical (sphericity = 0.5). Despite the sensitivity of the fall velocity of large particles to their shape, however, forecasts of distal ash concentration using particle size distributions of 0.1–100 μm and 0.1–250 μm show relatively good agreement between a spherical and non-spherical case for the first 36 h after an eruption. The vertical structure of an ash cloud is more sensitive to particle shape than the horizontal extent. Model particle trajectories are also sensitive to particle size, and we find a discrepancy between different particle size parameters for non-spherical ash: particle long axis L, used in cryptotephra studies, was on average twice the equivalent-volume sphere diameter d v , used ... |
format |
Article in Journal/Newspaper |
author |
Saxby, Jennifer Beckett, Frances Cashman, Katharine Rust, Alison Tennant, Eleanor |
spellingShingle |
Saxby, Jennifer Beckett, Frances Cashman, Katharine Rust, Alison Tennant, Eleanor The impact of particle shape on fall velocity:Implications for volcanic ash dispersion modelling |
author_facet |
Saxby, Jennifer Beckett, Frances Cashman, Katharine Rust, Alison Tennant, Eleanor |
author_sort |
Saxby, Jennifer |
title |
The impact of particle shape on fall velocity:Implications for volcanic ash dispersion modelling |
title_short |
The impact of particle shape on fall velocity:Implications for volcanic ash dispersion modelling |
title_full |
The impact of particle shape on fall velocity:Implications for volcanic ash dispersion modelling |
title_fullStr |
The impact of particle shape on fall velocity:Implications for volcanic ash dispersion modelling |
title_full_unstemmed |
The impact of particle shape on fall velocity:Implications for volcanic ash dispersion modelling |
title_sort |
impact of particle shape on fall velocity:implications for volcanic ash dispersion modelling |
publishDate |
2018 |
url |
https://hdl.handle.net/1983/09f22f80-484e-4458-8861-c558d214d6e4 https://research-information.bris.ac.uk/en/publications/09f22f80-484e-4458-8861-c558d214d6e4 https://doi.org/10.1016/j.jvolgeores.2018.08.006 https://research-information.bris.ac.uk/ws/files/168157470/Full_text_PDF_final_published_version_.pdf http://www.scopus.com/inward/record.url?scp=85052919348&partnerID=8YFLogxK |
genre |
Iceland Katla |
genre_facet |
Iceland Katla |
op_source |
Saxby , J , Beckett , F , Cashman , K , Rust , A & Tennant , E 2018 , ' The impact of particle shape on fall velocity : Implications for volcanic ash dispersion modelling ' , Journal of Volcanology and Geothermal Research , vol. 362 , pp. 32-48 . https://doi.org/10.1016/j.jvolgeores.2018.08.006 |
op_relation |
https://research-information.bris.ac.uk/en/publications/09f22f80-484e-4458-8861-c558d214d6e4 |
op_rights |
info:eu-repo/semantics/openAccess |
op_doi |
https://doi.org/10.1016/j.jvolgeores.2018.08.006 |
container_title |
Journal of Volcanology and Geothermal Research |
container_volume |
362 |
container_start_page |
32 |
op_container_end_page |
48 |
_version_ |
1797585712321658880 |