Massive earthquake swarm driven by magmatic intrusion at the Bransfield Strait, Antarctica
An earthquake swarm affected the Bransfield Strait, Antarctica, a unique rift basin in transition from intra-arc rifting to ocean spreading. The swarm, counting similar to 85,000 volcano-tectonic earthquakes since August 2020, is located close to the Orca submarine volcano, previously considered ina...
Published in: | Communications Earth & Environment |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://publishup.uni-potsdam.de/frontdoor/index/index/docId/64372 https://doi.org/10.1038/s43247-022-00418-5 |
Summary: | An earthquake swarm affected the Bransfield Strait, Antarctica, a unique rift basin in transition from intra-arc rifting to ocean spreading. The swarm, counting similar to 85,000 volcano-tectonic earthquakes since August 2020, is located close to the Orca submarine volcano, previously considered inactive. Simultaneously, geodetic data reported up to similar to 11 cm north-westward displacement over King George Island. We use a broad variety of geophysical data and methods to reveal the complex migration of seismicity, accompanying the intrusion of 0.26-0.56 km(3) of magma. Strike-slip earthquakes mark the intrusion at depth, while shallower normal faulting the similar to 20 km long lateral growth of a dike. Seismicity abruptly decreased after a Mw 6.0 earthquake, suggesting the magmatic dike lost pressure with the slipping of a large fault. A seafloor eruption is likely, but not confirmed by sea surface temperature anomalies. The unrest documents episodic magmatic intrusion in the Bransfield Strait, providing unique insights into active continental rifting. |
---|