ISMIP6 Antarctica

Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ic...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Seroussi, Helene, Nowicki, Sophie, Payne, Antony J., Goelzer, Heiko, Lipscomb, William H., Abe-Ouchi, Ayako, Agosta, Cecile, Albrecht, Torsten, Asay-Davis, Xylar, Barthel, Alice, Calov, Reinhard, Cullather, Richard, Dumas, Christophe, Galton-Fenzi, Benjamin K., Gladstone, Rupert, Golledge, Nicholas R., Gregory, Jonathan M., Greve, Ralf, Hattermann, Tore, Hoffman, Matthew J., Humbert, Angelika, Huybrechts, Philippe, Jourdain, Nicolas C., Kleiner, Thomas, Larour, Eric, Leguy, Gunter R., Lowry, Daniel P., Little, Chistopher M., Morlighem, Mathieu, Pattyn, Frank, Pelle, Tyler, Price, Stephen F., Quiquet, Aurelien, Reese, Ronja, Schlegel, Nicole-Jeanne, Shepherd, Andrew, Simon, Erika, Smith, Robin S., Straneo, Fiammetta, Sun, Sainan, Trusel, Luke D., Van Breedam, Jonas, van de Wal, Roderik S. W., Winkelmann, Ricarda (Prof. Dr.), Zhao, Chen, Zhang, Tong, Zwinger, Thomas
Format: Article in Journal/Newspaper
Language:English
Published: 2020
Subjects:
Online Access:https://publishup.uni-potsdam.de/frontdoor/index/index/docId/56300
https://doi.org/10.5194/tc-14-3033-2020
id ftubpotsdam:oai:kobv.de-opus4-uni-potsdam:56300
record_format openpolar
spelling ftubpotsdam:oai:kobv.de-opus4-uni-potsdam:56300 2023-12-03T10:13:31+01:00 ISMIP6 Antarctica Seroussi, Helene Nowicki, Sophie Payne, Antony J. Goelzer, Heiko Lipscomb, William H. Abe-Ouchi, Ayako Agosta, Cecile Albrecht, Torsten Asay-Davis, Xylar Barthel, Alice Calov, Reinhard Cullather, Richard Dumas, Christophe Galton-Fenzi, Benjamin K. Gladstone, Rupert Golledge, Nicholas R. Gregory, Jonathan M. Greve, Ralf Hattermann, Tore Hoffman, Matthew J. Humbert, Angelika Huybrechts, Philippe Jourdain, Nicolas C. Kleiner, Thomas Larour, Eric Leguy, Gunter R. Lowry, Daniel P. Little, Chistopher M. Morlighem, Mathieu Pattyn, Frank Pelle, Tyler Price, Stephen F. Quiquet, Aurelien Reese, Ronja Schlegel, Nicole-Jeanne Shepherd, Andrew Simon, Erika Smith, Robin S. Straneo, Fiammetta Sun, Sainan Trusel, Luke D. Van Breedam, Jonas van de Wal, Roderik S. W. Winkelmann, Ricarda (Prof. Dr.) Zhao, Chen Zhang, Tong Zwinger, Thomas 2020-09-17 https://publishup.uni-potsdam.de/frontdoor/index/index/docId/56300 https://doi.org/10.5194/tc-14-3033-2020 eng eng https://publishup.uni-potsdam.de/frontdoor/index/index/docId/56300 https://doi.org/10.5194/tc-14-3033-2020 https://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/closedAccess ddc:530 Institut für Physik und Astronomie article doc-type:article 2020 ftubpotsdam https://doi.org/10.5194/tc-14-3033-2020 2023-11-05T23:35:04Z Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015-2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between 7:8 and 30.0 cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar to present-day conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between 6 :1 and 8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt ... Article in Journal/Newspaper Antarc* Antarctic Antarctica East Antarctica Ice Sheet Ice Shelf Ice Shelves University of Potsdam: publish.UP Antarctic The Antarctic East Antarctica West Antarctic Ice Sheet The Cryosphere 14 9 3033 3070
institution Open Polar
collection University of Potsdam: publish.UP
op_collection_id ftubpotsdam
language English
topic ddc:530
Institut für Physik und Astronomie
spellingShingle ddc:530
Institut für Physik und Astronomie
Seroussi, Helene
Nowicki, Sophie
Payne, Antony J.
Goelzer, Heiko
Lipscomb, William H.
Abe-Ouchi, Ayako
Agosta, Cecile
Albrecht, Torsten
Asay-Davis, Xylar
Barthel, Alice
Calov, Reinhard
Cullather, Richard
Dumas, Christophe
Galton-Fenzi, Benjamin K.
Gladstone, Rupert
Golledge, Nicholas R.
Gregory, Jonathan M.
Greve, Ralf
Hattermann, Tore
Hoffman, Matthew J.
Humbert, Angelika
Huybrechts, Philippe
Jourdain, Nicolas C.
Kleiner, Thomas
Larour, Eric
Leguy, Gunter R.
Lowry, Daniel P.
Little, Chistopher M.
Morlighem, Mathieu
Pattyn, Frank
Pelle, Tyler
Price, Stephen F.
Quiquet, Aurelien
Reese, Ronja
Schlegel, Nicole-Jeanne
Shepherd, Andrew
Simon, Erika
Smith, Robin S.
Straneo, Fiammetta
Sun, Sainan
Trusel, Luke D.
Van Breedam, Jonas
van de Wal, Roderik S. W.
Winkelmann, Ricarda (Prof. Dr.)
Zhao, Chen
Zhang, Tong
Zwinger, Thomas
ISMIP6 Antarctica
topic_facet ddc:530
Institut für Physik und Astronomie
description Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015-2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between 7:8 and 30.0 cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar to present-day conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between 6 :1 and 8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt ...
format Article in Journal/Newspaper
author Seroussi, Helene
Nowicki, Sophie
Payne, Antony J.
Goelzer, Heiko
Lipscomb, William H.
Abe-Ouchi, Ayako
Agosta, Cecile
Albrecht, Torsten
Asay-Davis, Xylar
Barthel, Alice
Calov, Reinhard
Cullather, Richard
Dumas, Christophe
Galton-Fenzi, Benjamin K.
Gladstone, Rupert
Golledge, Nicholas R.
Gregory, Jonathan M.
Greve, Ralf
Hattermann, Tore
Hoffman, Matthew J.
Humbert, Angelika
Huybrechts, Philippe
Jourdain, Nicolas C.
Kleiner, Thomas
Larour, Eric
Leguy, Gunter R.
Lowry, Daniel P.
Little, Chistopher M.
Morlighem, Mathieu
Pattyn, Frank
Pelle, Tyler
Price, Stephen F.
Quiquet, Aurelien
Reese, Ronja
Schlegel, Nicole-Jeanne
Shepherd, Andrew
Simon, Erika
Smith, Robin S.
Straneo, Fiammetta
Sun, Sainan
Trusel, Luke D.
Van Breedam, Jonas
van de Wal, Roderik S. W.
Winkelmann, Ricarda (Prof. Dr.)
Zhao, Chen
Zhang, Tong
Zwinger, Thomas
author_facet Seroussi, Helene
Nowicki, Sophie
Payne, Antony J.
Goelzer, Heiko
Lipscomb, William H.
Abe-Ouchi, Ayako
Agosta, Cecile
Albrecht, Torsten
Asay-Davis, Xylar
Barthel, Alice
Calov, Reinhard
Cullather, Richard
Dumas, Christophe
Galton-Fenzi, Benjamin K.
Gladstone, Rupert
Golledge, Nicholas R.
Gregory, Jonathan M.
Greve, Ralf
Hattermann, Tore
Hoffman, Matthew J.
Humbert, Angelika
Huybrechts, Philippe
Jourdain, Nicolas C.
Kleiner, Thomas
Larour, Eric
Leguy, Gunter R.
Lowry, Daniel P.
Little, Chistopher M.
Morlighem, Mathieu
Pattyn, Frank
Pelle, Tyler
Price, Stephen F.
Quiquet, Aurelien
Reese, Ronja
Schlegel, Nicole-Jeanne
Shepherd, Andrew
Simon, Erika
Smith, Robin S.
Straneo, Fiammetta
Sun, Sainan
Trusel, Luke D.
Van Breedam, Jonas
van de Wal, Roderik S. W.
Winkelmann, Ricarda (Prof. Dr.)
Zhao, Chen
Zhang, Tong
Zwinger, Thomas
author_sort Seroussi, Helene
title ISMIP6 Antarctica
title_short ISMIP6 Antarctica
title_full ISMIP6 Antarctica
title_fullStr ISMIP6 Antarctica
title_full_unstemmed ISMIP6 Antarctica
title_sort ismip6 antarctica
publishDate 2020
url https://publishup.uni-potsdam.de/frontdoor/index/index/docId/56300
https://doi.org/10.5194/tc-14-3033-2020
geographic Antarctic
The Antarctic
East Antarctica
West Antarctic Ice Sheet
geographic_facet Antarctic
The Antarctic
East Antarctica
West Antarctic Ice Sheet
genre Antarc*
Antarctic
Antarctica
East Antarctica
Ice Sheet
Ice Shelf
Ice Shelves
genre_facet Antarc*
Antarctic
Antarctica
East Antarctica
Ice Sheet
Ice Shelf
Ice Shelves
op_relation https://publishup.uni-potsdam.de/frontdoor/index/index/docId/56300
https://doi.org/10.5194/tc-14-3033-2020
op_rights https://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/closedAccess
op_doi https://doi.org/10.5194/tc-14-3033-2020
container_title The Cryosphere
container_volume 14
container_issue 9
container_start_page 3033
op_container_end_page 3070
_version_ 1784260316644769792