Subsea permafrost in the Laptev Sea

During lower sea levels in glacial periods, deep permafrost formed on large continental shelf areas of the Arctic Ocean. Subsequent sea level rise and coastal erosion created subsea permafrost, which generally degrades after inundation under the influence of a complex suite of marine, near-shore pro...

Full description

Bibliographic Details
Main Author: Kneier, Fabian
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2019
Subjects:
Ice
Online Access:https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/index/index/docId/44076
Description
Summary:During lower sea levels in glacial periods, deep permafrost formed on large continental shelf areas of the Arctic Ocean. Subsequent sea level rise and coastal erosion created subsea permafrost, which generally degrades after inundation under the influence of a complex suite of marine, near-shore processes. Global warming is especially pronounced in the Arctic, and will increase the transition to and the degradation of subsea permafrost, with implications for atmospheric climate forcing, offshore infrastructure, and aquatic ecosystems. This thesis combines new geophysical, borehole observational and modelling approaches to enhance our understanding of subsea permafrost dynamics. Three specific areas for advancement were identified: (I) sparsity of observational data, (II) lacking implementation of salt infiltration mechanisms in models, and (III) poor understanding of the regional differences in key driving parameters. This study tested the combination of spectral ratios of the ambient vibration seismic wavefield, together with estimated shear wave velocity from seismic interferometry analysis, for estimating the thickness of the unfrozen sediment overlying the ice-bonded permafrost offshore. Mesoscale numerical calculations (10^1 to 10^2 m, thousands of years) were employed to develop and solve the coupled heat diffusion and salt transport equations including phase change effects. Model soil parameters were constrained by borehole data, and the impact of a variety of influences during the transgression was tested in modelling studies. In addition, two inversion schemes (particle swarm optimization and a least-square method) were used to reconstruct temperature histories for the past 200-300 years in the Laptev Sea region in Siberia from two permafrost borehole temperature records. These data were evaluated against larger scale reconstructions from the region. It was found (I) that peaks in spectral ratios modelled for three-layer, one-dimensional systems corresponded with thaw depths. Around Muostakh Island in ...