Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland
Meltwater delivered to the bed of the Greenland Ice Sheet is a driver of variable ice-motion through changes in effective pressure and enhanced basal lubrication. Ice surface velocities have been shown to respond rapidly both to meltwater production at the surface and to drainage of supraglacial lak...
Main Authors: | , , , , , , |
---|---|
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | https://publishup.uni-potsdam.de/frontdoor/index/index/docId/40905 https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-409053 https://doi.org/10.25932/publishup-40905 https://publishup.uni-potsdam.de/files/40905/pmnr513.pdf |
_version_ | 1829952655532752896 |
---|---|
author | Clason, Caroline C. Mair, D. W. F. Nienow, P. W. Bartholomew, I. D. Sole, Andrew Palmer, Steven Schwanghart, Wolfgang (Dr. rer. nat.) |
author_facet | Clason, Caroline C. Mair, D. W. F. Nienow, P. W. Bartholomew, I. D. Sole, Andrew Palmer, Steven Schwanghart, Wolfgang (Dr. rer. nat.) |
author_sort | Clason, Caroline C. |
collection | University of Potsdam: publish.UP |
description | Meltwater delivered to the bed of the Greenland Ice Sheet is a driver of variable ice-motion through changes in effective pressure and enhanced basal lubrication. Ice surface velocities have been shown to respond rapidly both to meltwater production at the surface and to drainage of supraglacial lakes, suggesting efficient transfer of meltwater from the supraglacial to subglacial hydrological systems. Although considerable effort is currently being directed towards improved modelling of the controlling surface and basal processes, modelling the temporal and spatial evolution of the transfer of melt to the bed has received less attention. Here we present the results of spatially distributed modelling for prediction of moulins and lake drainages on the Leverett Glacier in Southwest Greenland. The model is run for the 2009 and 2010 ablation seasons, and for future increased melt scenarios. The temporal pattern of modelled lake drainages are qualitatively comparable with those documented from analyses of repeat satellite imagery. The modelled timings and locations of delivery of meltwater to the bed also match well with observed temporal and spatial patterns of ice surface speed-ups. This is particularly true for the lower catchment (< 1000 m a.s.l.) where both the model and observations indicate that the development of moulins is the main mechanism for the transfer of surface meltwater to the bed. At higher elevations (e.g. 1250-1500 m a.s.l.) the development and drainage of supraglacial lakes becomes increasingly important. At these higher elevations, the delay between modelled melt generation and subsequent delivery of melt to the bed matches the observed delay between the peak air temperatures and subsequent velocity speed-ups, while the instantaneous transfer of melt to the bed in a control simulation does not. Although both moulins and lake drainages are predicted to increase in number for future warmer climate scenarios, the lake drainages play an increasingly important role in both expanding the area over ... |
format | Article in Journal/Newspaper |
genre | glacier Greenland Ice Sheet Leverett Glacier |
genre_facet | glacier Greenland Ice Sheet Leverett Glacier |
geographic | Greenland Leverett Glacier |
geographic_facet | Greenland Leverett Glacier |
id | ftubpotsdam:oai:kobv.de-opus4-uni-potsdam:40905 |
institution | Open Polar |
language | English |
long_lat | ENVELOPE(-147.583,-147.583,-85.633,-85.633) |
op_collection_id | ftubpotsdam |
op_doi | https://doi.org/10.25932/publishup-40905 |
op_rights | https://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
publishDate | 2019 |
record_format | openpolar |
spelling | ftubpotsdam:oai:kobv.de-opus4-uni-potsdam:40905 2025-04-20T14:37:19+00:00 Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland Clason, Caroline C. Mair, D. W. F. Nienow, P. W. Bartholomew, I. D. Sole, Andrew Palmer, Steven Schwanghart, Wolfgang (Dr. rer. nat.) 2019-01-17 application/pdf https://publishup.uni-potsdam.de/frontdoor/index/index/docId/40905 https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-409053 https://doi.org/10.25932/publishup-40905 https://publishup.uni-potsdam.de/files/40905/pmnr513.pdf eng eng https://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess ddc:910 Mathematisch-Naturwissenschaftliche Fakultät postprint doc-type:article 2019 ftubpotsdam https://doi.org/10.25932/publishup-40905 2025-03-25T05:06:47Z Meltwater delivered to the bed of the Greenland Ice Sheet is a driver of variable ice-motion through changes in effective pressure and enhanced basal lubrication. Ice surface velocities have been shown to respond rapidly both to meltwater production at the surface and to drainage of supraglacial lakes, suggesting efficient transfer of meltwater from the supraglacial to subglacial hydrological systems. Although considerable effort is currently being directed towards improved modelling of the controlling surface and basal processes, modelling the temporal and spatial evolution of the transfer of melt to the bed has received less attention. Here we present the results of spatially distributed modelling for prediction of moulins and lake drainages on the Leverett Glacier in Southwest Greenland. The model is run for the 2009 and 2010 ablation seasons, and for future increased melt scenarios. The temporal pattern of modelled lake drainages are qualitatively comparable with those documented from analyses of repeat satellite imagery. The modelled timings and locations of delivery of meltwater to the bed also match well with observed temporal and spatial patterns of ice surface speed-ups. This is particularly true for the lower catchment (< 1000 m a.s.l.) where both the model and observations indicate that the development of moulins is the main mechanism for the transfer of surface meltwater to the bed. At higher elevations (e.g. 1250-1500 m a.s.l.) the development and drainage of supraglacial lakes becomes increasingly important. At these higher elevations, the delay between modelled melt generation and subsequent delivery of melt to the bed matches the observed delay between the peak air temperatures and subsequent velocity speed-ups, while the instantaneous transfer of melt to the bed in a control simulation does not. Although both moulins and lake drainages are predicted to increase in number for future warmer climate scenarios, the lake drainages play an increasingly important role in both expanding the area over ... Article in Journal/Newspaper glacier Greenland Ice Sheet Leverett Glacier University of Potsdam: publish.UP Greenland Leverett Glacier ENVELOPE(-147.583,-147.583,-85.633,-85.633) |
spellingShingle | ddc:910 Mathematisch-Naturwissenschaftliche Fakultät Clason, Caroline C. Mair, D. W. F. Nienow, P. W. Bartholomew, I. D. Sole, Andrew Palmer, Steven Schwanghart, Wolfgang (Dr. rer. nat.) Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland |
title | Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland |
title_full | Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland |
title_fullStr | Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland |
title_full_unstemmed | Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland |
title_short | Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland |
title_sort | modelling the transfer of supraglacial meltwater to the bed of leverett glacier, southwest greenland |
topic | ddc:910 Mathematisch-Naturwissenschaftliche Fakultät |
topic_facet | ddc:910 Mathematisch-Naturwissenschaftliche Fakultät |
url | https://publishup.uni-potsdam.de/frontdoor/index/index/docId/40905 https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-409053 https://doi.org/10.25932/publishup-40905 https://publishup.uni-potsdam.de/files/40905/pmnr513.pdf |