Late Quaternary ecosystem and climate interactions in SW Balkans inferred from Lake Prespa sediments

The transboundary Lake Prespa and its watershed enclose a remarkable biodiversity that is protected by several national and international treaties. Situated at 849 m a.s.l., the area is characterized by a transitional climate and the closed nature of the basin controls Lake Prespa’s modern hydrology...

Full description

Bibliographic Details
Main Author: Panagiotopoulos, Konstantinos
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2013
Subjects:
Online Access:https://kups.ub.uni-koeln.de/5518/
https://kups.ub.uni-koeln.de/5518/1/Panagiotopoulos2013_Thesis.pdf
Description
Summary:The transboundary Lake Prespa and its watershed enclose a remarkable biodiversity that is protected by several national and international treaties. Situated at 849 m a.s.l., the area is characterized by a transitional climate and the closed nature of the basin controls Lake Prespa’s modern hydrology. An 18 m-long sediment sequence was retrieved from a distal location, away from stream inflow, where preliminary hydroacoustic investigations suggested undisturbed sedimentation. Consequently, the sediments were dated and analyzed using palynological, sedimentological and geochemical techniques. The age model is based on AMS and ESR dating, tephrochronology and cross correlation with the Greenland ice record (NGRIP) and suggests an age of c. 92 ka cal BP for the base of the sequence. The pollen spectra allow for the zoning of the record in three major phases of vegetation development corresponding to Marine Isotope Stages 5 to 1. The forested phases of MIS 5 and MIS 1 are dominated by thermophilous and drought-sensitive trees (e.g. Quercus, Carpinus, Fagus) suggesting higher temperatures and moisture availability during their growing season. Increased lake productivity, hypolimnion anoxia and calcite precipitation are recorded in these intervals. Continuous presence of Mediterranean frost-sensitive species (e.g. Pistacia, Phillyrea) during the Holocene implies rising temperatures in late winter and spring. Sporadic occurrence of maquis pollen in MIS 5 suggest that temperature was probably limiting their expansion. Increasing fuel availability and summer aridity most likely account for a higher microscopic charred particle concentration during the Holocene (in particular after c. 5.5 ka). However, intensifying anthropogenic activity has probably overridden climate forcing over the last c. 2 ka. Within MIS 5 and MIS 1, brief periods (centennial to millennial) of open landscape are also documented and are ascribed to colder and drier climate conditions persisting at Prespa. During MIS 3, the relatively open landscape is ...