Large-Eddy Simulation of Arctic Stratocumulus: Process Representation and Surface Heterogeneity

Small-scale processes are crucial for the evolution of Stratocumulus and act on scales reaching down to less than one meter. Most large-eddy simulation studies still apply a horizontal resolution of tens of meters, limiting the ability to resolve cloud-driving processes. I investigate such small-sca...

Full description

Bibliographic Details
Main Author: Rauterkus, Robert
Format: Doctoral or Postdoctoral Thesis
Language:German
English
Published: 2021
Subjects:
Online Access:https://kups.ub.uni-koeln.de/53928/
https://kups.ub.uni-koeln.de/53928/7/large_eddy_simulation_of_arctic_stratocumulus.pdf
id ftubkoeln:oai:USBKOELN.ub.uni-koeln.de:53928
record_format openpolar
spelling ftubkoeln:oai:USBKOELN.ub.uni-koeln.de:53928 2023-05-15T14:23:26+02:00 Large-Eddy Simulation of Arctic Stratocumulus: Process Representation and Surface Heterogeneity Rauterkus, Robert 2021 application/pdf https://kups.ub.uni-koeln.de/53928/ https://kups.ub.uni-koeln.de/53928/7/large_eddy_simulation_of_arctic_stratocumulus.pdf de eng ger eng https://kups.ub.uni-koeln.de/53928/7/large_eddy_simulation_of_arctic_stratocumulus.pdf Rauterkus, Robert orcid:0000-0001-8288-3203 (2021). Large-Eddy Simulation of Arctic Stratocumulus: Process Representation and Surface Heterogeneity. PhD thesis, Universität zu Köln. ddc:500 ddc:530 ddc:550 doc-type:doctoralThesis Text 2021 ftubkoeln 2022-11-09T07:32:08Z Small-scale processes are crucial for the evolution of Stratocumulus and act on scales reaching down to less than one meter. Most large-eddy simulation studies still apply a horizontal resolution of tens of meters, limiting the ability to resolve cloud-driving processes. I investigate such small-scale processes in a reference case that is—based on the recent field campaigns ACLOUD and PASCAL—defined within this thesis to represent a mixed-phase Stratocumulus during Arctic spring. I apply large-eddy simulations with horizontal resolutions of 35m, 10m, 3.5m, and 3m and a vertical resolution of about 3m. My analysis focuses on the resolution sensitivity of cloud-top entrainment processes and the effects of surface heterogeneity structure on the atmospheric boundary layer. First, I find that for a horizontal grid spacing larger than 10m, the effects of small-scale microphysical cooling and turbulent engulfment on cloud-top entrainment are only represented sufficiently for the atmospheric boundary layer bulk profiles but not on a process level. The stratification-limited size of energy-containing eddies violates the assumptions underlying many sub-grid scale models of turbulent mixing. Second, I observe a decrease in cloud-top entrainment for a horizontal resolution coarser than 10m, which results in 15% more cloud water after six hours of simulation and a corresponding optical thickening of the Stratocumulus. Third, I find that structuring surface heterogeneity does not affect zero- and first-order bulk quantities outside the surface layer. A notable sensibility in higher altitudes is only observed for higher-order quantities, which show increased values over structured surface heterogeneity. Fourth, I observe structured surface heterogeneity to form a streamwise elongated, roll-like, secondary circulation perpendicular to the mean wind. Its formation is neither captured by traditional Arctic lead theory nor by the theory of surface heterogeneity effects on cloud-free atmospheric boundary layers. It turns out that ... Doctoral or Postdoctoral Thesis Arctic Arctic Cologne University: KUPS Arctic
institution Open Polar
collection Cologne University: KUPS
op_collection_id ftubkoeln
language German
English
topic ddc:500
ddc:530
ddc:550
spellingShingle ddc:500
ddc:530
ddc:550
Rauterkus, Robert
Large-Eddy Simulation of Arctic Stratocumulus: Process Representation and Surface Heterogeneity
topic_facet ddc:500
ddc:530
ddc:550
description Small-scale processes are crucial for the evolution of Stratocumulus and act on scales reaching down to less than one meter. Most large-eddy simulation studies still apply a horizontal resolution of tens of meters, limiting the ability to resolve cloud-driving processes. I investigate such small-scale processes in a reference case that is—based on the recent field campaigns ACLOUD and PASCAL—defined within this thesis to represent a mixed-phase Stratocumulus during Arctic spring. I apply large-eddy simulations with horizontal resolutions of 35m, 10m, 3.5m, and 3m and a vertical resolution of about 3m. My analysis focuses on the resolution sensitivity of cloud-top entrainment processes and the effects of surface heterogeneity structure on the atmospheric boundary layer. First, I find that for a horizontal grid spacing larger than 10m, the effects of small-scale microphysical cooling and turbulent engulfment on cloud-top entrainment are only represented sufficiently for the atmospheric boundary layer bulk profiles but not on a process level. The stratification-limited size of energy-containing eddies violates the assumptions underlying many sub-grid scale models of turbulent mixing. Second, I observe a decrease in cloud-top entrainment for a horizontal resolution coarser than 10m, which results in 15% more cloud water after six hours of simulation and a corresponding optical thickening of the Stratocumulus. Third, I find that structuring surface heterogeneity does not affect zero- and first-order bulk quantities outside the surface layer. A notable sensibility in higher altitudes is only observed for higher-order quantities, which show increased values over structured surface heterogeneity. Fourth, I observe structured surface heterogeneity to form a streamwise elongated, roll-like, secondary circulation perpendicular to the mean wind. Its formation is neither captured by traditional Arctic lead theory nor by the theory of surface heterogeneity effects on cloud-free atmospheric boundary layers. It turns out that ...
format Doctoral or Postdoctoral Thesis
author Rauterkus, Robert
author_facet Rauterkus, Robert
author_sort Rauterkus, Robert
title Large-Eddy Simulation of Arctic Stratocumulus: Process Representation and Surface Heterogeneity
title_short Large-Eddy Simulation of Arctic Stratocumulus: Process Representation and Surface Heterogeneity
title_full Large-Eddy Simulation of Arctic Stratocumulus: Process Representation and Surface Heterogeneity
title_fullStr Large-Eddy Simulation of Arctic Stratocumulus: Process Representation and Surface Heterogeneity
title_full_unstemmed Large-Eddy Simulation of Arctic Stratocumulus: Process Representation and Surface Heterogeneity
title_sort large-eddy simulation of arctic stratocumulus: process representation and surface heterogeneity
publishDate 2021
url https://kups.ub.uni-koeln.de/53928/
https://kups.ub.uni-koeln.de/53928/7/large_eddy_simulation_of_arctic_stratocumulus.pdf
geographic Arctic
geographic_facet Arctic
genre Arctic
Arctic
genre_facet Arctic
Arctic
op_relation https://kups.ub.uni-koeln.de/53928/7/large_eddy_simulation_of_arctic_stratocumulus.pdf
Rauterkus, Robert orcid:0000-0001-8288-3203 (2021). Large-Eddy Simulation of Arctic Stratocumulus: Process Representation and Surface Heterogeneity. PhD thesis, Universität zu Köln.
_version_ 1766295989315960832